首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3252篇
  免费   91篇
  国内免费   26篇
测绘学   118篇
大气科学   410篇
地球物理   695篇
地质学   1197篇
海洋学   165篇
天文学   560篇
综合类   12篇
自然地理   212篇
  2021年   40篇
  2020年   40篇
  2019年   34篇
  2018年   90篇
  2017年   79篇
  2016年   116篇
  2015年   89篇
  2014年   110篇
  2013年   178篇
  2012年   97篇
  2011年   122篇
  2010年   143篇
  2009年   181篇
  2008年   122篇
  2007年   151篇
  2006年   131篇
  2005年   117篇
  2004年   71篇
  2003年   80篇
  2002年   86篇
  2001年   75篇
  2000年   72篇
  1999年   59篇
  1998年   53篇
  1997年   54篇
  1996年   43篇
  1995年   48篇
  1994年   49篇
  1993年   38篇
  1992年   28篇
  1991年   36篇
  1990年   34篇
  1988年   24篇
  1987年   24篇
  1986年   24篇
  1985年   23篇
  1984年   28篇
  1983年   47篇
  1982年   32篇
  1981年   25篇
  1980年   28篇
  1979年   25篇
  1978年   27篇
  1976年   28篇
  1975年   22篇
  1974年   24篇
  1973年   36篇
  1972年   33篇
  1971年   22篇
  1970年   21篇
排序方式: 共有3369条查询结果,搜索用时 12 毫秒
1.
A lacustrine carbonate sequence from Hawes Water, Lancashire, UK, has been studied using stable isotopic, lithological, pollen and mineral magnetic analysis. The data reveal four abrupt climatic oscillations in the Late‐glacial Interstadial leading up to the onset of the Loch Lomond Stadial. The data also point to climatic warming relatively early within the stadial, ca. 12 500 GRIP yr, prior to the onset of the Holocene. The oxygen isotope record is taken as a signature of climate forcing against which the response of the lake‐system can be monitored. By adopting this approach it is revealed that the response of the biological system to the rapid climatic oscillations is non‐linear and primarily a function of the antecedent conditions. A significant end‐Devensian isotopic excursion (A) is matched by only minor changes in the cold‐adapted floras and faunas. During the warmer interstadial, the response of the biological ecosystem (events B–D) is clearly influenced by thresholds: major changes in the catchment vegetation associated with relatively minor oscillations in the isotopic signature. The stratigraphical patterns reveal significant lag effects between the onset of climate deterioration and resulting changes in vegetation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
2.
3.
4.
An analysis is made of the results from all repeated gravity measurements of the Fennoscandian land uplift gravity line 63°. The line is, thereby, divided into two separate parts: one part west of the land uplift maximum, and the other part east of the land uplift maximum. A statistically significant change of gravity is found both for the western part and the eastern one. Both parts give a relation between gravity change and land uplift of about ?0.22μgal/mm.  相似文献   
5.
6.
Thorium- and uranium isotopes were measured in a diagenetic manganese nodule from the Peru basin applying alpha- and thermal ionization mass spectrometry (TIMS). Alpha-counting of 62 samples was carried out with a depth resolution of 0.4 mm to gain a high-resolution230Thexcess profile. In addition, 17 samples were measured with TIMS to obtain precise isotope concentrations and isotope ratios. We got values of 0.06–0.59 ppb (230Th), 0.43–1.40 ppm (232Th), 0.09–0.49 ppb (234U) and 1.66–8.24 ppm (238U). The uranium activity ratio in the uppermost samples (1–6 mm) and in two further sections in the nodule at 12.5±1.0 mm and 27.3–33.5 mm comes close to the present ocean water value of 1.144±0.004. In two other sections of the nodule, this ratio is significantly higher, probably reflecting incorporation of diagenetic uranium. The upper 25 mm section of the Mn nodule shows a relatively smooth exponential decrease in the230Thexcess concentration (TIMS). The slope of the best fit yields a growth rate of 110 mm/Ma up to 24.5 mm depth. The section from 25 to 30.3 mm depth shows constant230Thexcess concentrations probably due to growth rates even faster than those in the top section of the nodule. From 33 to 50 mm depth, the growth rate is approximately 60 mm/Ma. Two layers in the nodule with distinct laminations (11–15 and 28–33 mm depth) probably formed during the transition from isotopic stage 8 to 7 and in stage 5e, respectively. The Mn/Fe ratio shows higher values during interglacials 5 and 7, and lower ones during glacials 4 and 6. A comparison of our data with data from adjacent sediment cores suggests (a) a variable supply of hydrothermal Mn to sediments and Mn nodules of the Peru basin or (b) suboxic conditions at the water sediment interface during periods with lower Mn/Fe ratios.  相似文献   
7.
8.
We developed the first tree-ring chronology, based on 73 cores from 29 Pinus tabulaeformis trees, for the Xiaolong Mountain area of central China, a region at the boundary of the Asian summer monsoon. This chronology exhibits significant (at 0.01 level) positive correlations with precipitation in May and June, and negative correlations with temperature in May, June and July. Highest linear correlation is observed between tree growth and the seasonalized (April–July) precipitation, suggesting that tree rings tend to integrate the monthly precipitation signals. Accordingly, the April–July total precipitation was reconstructed back to 1629 using these tree rings, explaining 44.7?% of the instrumental variance. A severe drought occurred in the area during the 1630s–1640s, which may be related to the weakened Asian summer monsoon caused by a low land-sea thermal gradient. The dry epoch during the 1920s–1930s and since the late 1970s may be explained by the strengthened Hadley circulation in a warmer climate. The dry (wet) epochs of the 1920s–1930s (the 1750s and 1950s) occurred during the warm (cold) phases of the El Ni?o-Southern Oscillation and the Pacific Decadal Oscillation that are often associated with weakened (strengthened) East Asian summer monsoon. These relationships indicate significant teleconnections operating over the past centuries in central China related to large-scale synoptic features.  相似文献   
9.
Ophiolitic bodies in the Dinaro-Hellenic mountain belt are among the most important ones in the Peri-Mediterranean Alpine chains. The characteristic feature of this ophiolitic belt is its Middle to Late Jurassic age of obduction. The ophiolitic bodies form two major belts on each side of the Pelagonian zone: an east Pelagonian belt in the Vardarian domain and a Supra-Pelagonian ophiolitic belt (SPO) to the west. The different hypotheses relative to the origin of the SPO present geodynamic evolution models accounting for most of the available data: a mid-Triassic episode of rifting; a Ladinian–Jurassic episode of sea-floor spreading forming notably the Maliac Ocean; a Middle to Late Jurassic convergent period with subduction and obduction episodes, and finally, a late episode of Tertiary compressional deformation responsible for the westward thrusting of the Jurassic ophiolitic nappes over the external zones. Despite many studies dating from the early 1970s, the eastern or western Pelagonian origin of these ophiolites, especially the SPO, is still under dispute. Whatever the adopted hypothesis, we consider that the main SPO bodies (N-Pindos, Vourinos, Othris, Evia, Argolis) have the same origin because of their geographic continuity and of the similarities in their geological characteristics. We propose that this ocean corresponds everywhere to the Maliac Ocean, defined in Othris from the well-preserved sedimentary (oceanic margin) and ophiolitic nappes thrust during the Late Jurassic obduction onto the Pelagonian platform. There is strong evidence for the existence of two deep basins on both sides of the Pelagonian continental ridge during Triassic–Jurassic times. They correspond, respectively, to the Vardar area to the east and the Pindos domain to the west, one of these domains being at the origin of the SPO. The hypothesis of an eastward emplacement of the SPO from the Pindos domain is based mainly on sedimentological data from the margin series and on structural analyses of ophiolitic bodies. However, we conclude the westward obduction of the Maliac Ocean, originating from the Vardar area, to be the best fitting model. This westward model is supported by paleogeographic and structural constraints on regional scale. Notably, the absence of obducted ophiolites in the Jurassic series of the Koziakas units (units attributed to the western Pelagonian margin) and of the Parnassus domain (on the eastern side of the Pindos basin) is difficult to reconcile with an eastward obduction from the Pindos domain. Other observations, such as the distribution of ophiolitic detritus in the internal and external zones, also promote the westward Late Jurassic obduction of the Maliac Ocean. Our preferred model offers a consistent explanation for the mechanism and timing of the emplacement of the SPO, as well as providing insight on the origin and emplacement of the Vardarian ophiolites. Following this hypothesis, there is no need for a clear boundary between the SPO and the west Vardarian ophiolitic bodies as they were obducted from the same oceanic basin and during the same Jurassic tectonic event. In this paper, we develop evidence in favor of the eastern Pelagonian origin for the SPO (our adopted model) and provide discussion on the data supporting the main alternative hypothesis (western origin for the SPO).  相似文献   
10.
Ambient seismic noise measurements were conducted inside the Cathedral of Cologne (Germany) for assessing its frequencies of vibration and for checking whether these occur in the range where soil amplification is expected. If this is the case, damages may increase in case of an earthquake due to an increased structural response of the building. Analysis of the ratio between the horizontal and vertical components of the spectra recorded at stations located inside the building as well as the ratio between the corresponding components of the spectra recorded simultaneously inside the building and at a reference station placed in the basement of the cathedral indicated several modes of vibration. Facilitated by these results an assessment of the seismic vulnerability was attempted for a 2D ground motion scenario using the finite element method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号