首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   3篇
  国内免费   1篇
大气科学   4篇
地球物理   20篇
地质学   19篇
海洋学   68篇
天文学   13篇
自然地理   6篇
  2022年   2篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   6篇
  2016年   6篇
  2015年   6篇
  2014年   3篇
  2013年   13篇
  2012年   8篇
  2011年   10篇
  2010年   9篇
  2009年   6篇
  2008年   4篇
  2007年   5篇
  2006年   6篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1977年   1篇
排序方式: 共有130条查询结果,搜索用时 15 毫秒
81.
Sinking particles were collected using time-series sediment traps deployed at 350 and 20 mab at Site SB (34° 58.5’N, 139° 20.9’E, 1544 m depth) near the center of Sagami Bay, off Japan with high time resolutions of 5-8 days (March 1997 to August 1998) and 3-4.5 days (March 1998 to August 1998), respectively. The major components (CaCO3, OM, opal, and clay) of these sinking particles and surface bottom sediments were determined using a stepwise leaching method combined with gravimetry. Average total mass fluxes were 1480, 5560 and 3068 mg/m2/year at 350 mab, at 20 mab, and in the surface sediments, respectively, indicating an enhanced collection of sinking particles at 20 mab. Clay was the dominant component and biogenic components (opal+OM+CaCO3) were dominated mainly by opal and secondly by OM. On average, opal and CaCO3 contents decreased gradually as clay content increased with increasing depth from 350 mab-20 mab and in the surface sediments, indicating dissolution of opal and CaCO3 through sinking, rebound, resuspension or sedimentation processes. Thirteen total mass flux peaks at 17--40-day intervals were observed at 350 mab during the period from March 1997 to August 1998 except for winter, while eight peaks were observed at 20 mab for the period from March 1998 to August 1998. Two types of total mass peaks can be distinguished: one with a clear increase in biogenic flux (opal+OM+CaCO3) and little or no increase in clay flux and termed a bloom type (B-type), and the other with a clear increase in clay flux, little increase in biogenic flux and termed a resuspension type (R-type). Some R-type peaks, but not all, coincided with total mass flux peaks observed at the mouth of Tokyo Bay and suggested the possibility of the effect of particulate materials transported from Tokyo Bay to site SB. The enormously large peak observed at 20 mab in late May 1998 and that at 350 mab in early June 1998 were considered to be due to some physical perturbations from an earthquake swarm near site SB during the period from April to June 1998. The 17--40-day periodicity was associated clearly with the change in biogenic flux dominated by opal flux and is thought to reflect the periodicity of biological productivity dominated by diatoms in the euphotic zone of Sagami Bay.  相似文献   
82.
Vertical profiles of pH, Eh, and major and minor chemical constituents in interstitial waters have been studied in four piston cores from deep-sea basins of the Japan Sea. Sulfate concentration decreases remarkably with increasing depth in three cores, and hydrogen sulfide is observed in two cores although the overlying bottom water is highly aerated. Three types of interstitial waters are observed in the four cores: (1) alkalinity and manganese concentration increase gradually with increasing depth, and sulfate reduction is not appreciable, (2) alkalinity increases and sulfate concentration decreases remarkably, and hydrogen sulfide is not detected, and (3) alkalinity increases and sulfate concentration decreases remarkably, and hydrogen sulfide is observed. Factors controlling the chemical composition of interstitial waters are discussed.  相似文献   
83.
84.
85.
Climate Dynamics - The interannual-decadal variability of the wintertime mixed layer depths (MLDs) over the North Pacific is investigated from an empirical orthogonal function (EOF) analysis of an...  相似文献   
86.
We compiled and analyzed long-term data, including chemical, physical and phytoplankton community data, for the Lake Biwa ecosystem from 1962 to 2003. Analyses on environmental data indicate that Lake Biwa had experienced intensified eutrophication (according to total phosphorus concentration) in the late 1960s and returned to a less eutrophic status around 1985, and then exhibited rapid warming and thus increased water column stability since 1990. Total phytoplankton cell volume largely followed the trend of total phosphorus concentration, albeit short-term fluctuations existed. However, phytoplankton community shifted dramatically in response to those changes of environmental states. These shifts were cause by changes in trophic status driven by phosphorus loadings and physical properties in the water column driven by warming. Moreover, most phytoplankton species did not show a strong linear correlation with environmental variables, suggesting nonlinear transitions among different states.  相似文献   
87.
We describe the mode of occurrence and geochemical characteristics of basalts, in the Khangai–Khentei belt in Mongolia, overlain by Middle Paleozoic radiolarian chert in an extensive accretionary complex. These basalts are greatly enriched in K, Ti, Fe, P, Rb, Ba, Th, and Nb in comparison to the composition of the mid‐ocean ridge basalts, indicative of within‐plate alkaline type. Ti/Y vs Nb/Y and MnO/TiO2/P2O5 ratios of the basalts also suggest within‐plate affinities. Considering the geochemical characteristics as well as the conformable relationship with the overlying radiolarian chert, the alkaline basalts were clearly not continental but formed a pelagic oceanic island. The mode of occurrence and geochemistry of the basalts show that the alkaline basaltic volcanic activity had taken place to form an oceanic island in the Paleozoic pelagic region sufficiently far from continents to allow radiolarian ooze accumulation.  相似文献   
88.
We investigate the relation between coronal hole (CH) areas and solar wind speeds during 1995?–?2011 using the potential field (PF) model analysis of magnetograph observations and interplanetary scintillation (IPS) observations by the Institute for Space-Earth Environmental Research (formerly Solar-Terrestrial Environment Laboratory) of Nagoya University. We obtained a significant positive correlation between the CH areas (\(A\)) derived from the PF model calculations and solar wind speeds (\(V\)) derived from the IPS observations. The correlation coefficients between them are usually high, but they drop significantly in solar maxima. The slopes of the \(A\)?–?\(V\) relation are roughly constant except for the period around solar maximum, when flatter or steeper slopes are observed. The excursion of the correlation coefficients and slopes at solar maxima is ascribed partly to the effect of rapid structural changes in the coronal magnetic field and solar wind, and partly to the predominance of small CHs. It is also demonstrated that \(V\) is inversely related to the flux expansion factor (\(f\)) and that \(f\) is closely related to \(A^{-1/2}\); hence, \(V \propto A^{1/2}\). A better correlation coefficient is obtained from the \(A^{1/2}\)?–?\(V\) relation, and this fact is useful for improving space weather predictions. We compare the CH areas derived from the PF model calculations with He i 1083 nm observations and show that the PF model calculations provide reliable estimates of the CH area, particularly for large \(A\).  相似文献   
89.
Locally enhanced turbulent mixing over rough bottom bathymetry is one of the candidates that might make up for the lack of diapycnal diffusivity in maintaining the global overturning circulation. In the present study, using a two-dimensional vertical numerical model for the Brazil Basin, we numerically examine the intensity and vertical structure of tide-induced mixing over multi-beam bottom bathymetry via the comparison with those over somewhat smoothed bottom bathymetry. Note that even this smoothed bottom bathymetry is finer than in commonly used datasets. In comparison to the response over the smoothed bottom bathymetry, energy dissipation rates are enhanced within a few hundred meters over the multi-beam bottom bathymetry. In spite of several limitations of the two-dimensional vertical numerical model, the magnitude and vertical distribution of the calculated dissipation rates agree well with those from microstructure measurements. We find that tidal interaction with fine-scale (≤2 km) bottom bathymetry efficiently generates high wavenumber internal waves, which are subject to local energy dissipation and hence strongly control the abyssal mixing; the most important finding is that the intensity and vertical decay scale of abyssal mixing are in a trade-off relationship with each other, which is not taken into account in the existing parameterizations.  相似文献   
90.
Large eddy simulation (LES) of the resonant inertial response of the upper ocean to strong wind forcing is carried out; the results are used to evaluate the performance of each of the two second-order turbulence closure models presented by Mellor and Yamada (Rev Geophys Space Phys 20:851–875, 1982) (MY) and by Nakanishi and Niino (J Meteorol Soc Jpn 87:895–912, 2009) (NN). The major difference between MY and NN is in the formulation of the stability functions and the turbulent length scale, both strongly linked with turbulent fluxes; in particular, the turbulent length scale in NN, unlike that in MY, is allowed to decrease with increasing density stratification. We find that MY underestimates and NN overestimates the development of mixed layer features, for example, the strong entrainment at the base of the oceanic mixed layer and the accompanying decrease of sea surface temperature. Considering that the stability functions in NN perform better than those in MY in reproducing the vertical structure of turbulent heat flux, we slightly modify NN to find that the discrepancy between LES and NN can be reduced by more strongly restricting the turbulent length scale with increasing density stratification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号