首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   4篇
  国内免费   7篇
测绘学   8篇
大气科学   50篇
地球物理   18篇
地质学   31篇
海洋学   55篇
天文学   33篇
自然地理   14篇
  2021年   2篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   5篇
  2015年   6篇
  2014年   15篇
  2013年   8篇
  2012年   15篇
  2011年   9篇
  2010年   11篇
  2009年   15篇
  2008年   5篇
  2007年   5篇
  2006年   6篇
  2005年   3篇
  2004年   3篇
  2003年   9篇
  2002年   8篇
  2001年   6篇
  2000年   4篇
  1999年   8篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   6篇
  1993年   1篇
  1992年   5篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1976年   6篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
  1951年   1篇
排序方式: 共有209条查询结果,搜索用时 171 毫秒
141.
Potentially toxic metals, such as Cu, Pb and Zn, are leached from weathered rocks at many closed mine sites due to the acidic environments and mineralogical modifications. The mobilized toxic metals may cause contamination of surrounding water bodies. In this study, both laboratory column experiments and field observations at a former mine located in the north of Japan were carried out to compare the leaching behavior of Cu, Pb and Zn. The thickness of the surface weathered rock was varied (10, 20 and 30 cm) for the columns experiments while porous cups for porewater sampling were set up at different depths (GL-15, -45, -70, and -95 cm) for the field observations. Deionized water was added once a week over 75 weeks to the columns to simulate rainfall while porewater was extracted by a vacuum pump in several sampling campaigns (over 18 months). Similar low pH and leaching behavior of potentially toxic metals were observed for column experiments and field observations. A moderate increase in concentration with depth was observed for Cu and Zn. However, no increase in concentration was observed for Pb. This suggests that the leaching of Cu and Zn is enhanced by the length of the flow pathway through the weathered rock layer while Pb concentration is restricted by the precipitation of insoluble Pb sulfate. Thus, the thickness of the weathered rock layer is an important parameter that should be taken into consideration to estimate the loads of some potentially toxic metals, which is important when designing remediation schemes.  相似文献   
142.
143.
We present an algorithm to compute the incomplete elliptic integral of a general form. The algorithm efficiently evaluates some linear combinations of incomplete elliptic integrals of all kinds to a high precision. Some numerical examples are given as illustrations. This enables us to numerically calculate the values and the partial derivatives of incomplete elliptic integrals of all kinds, which are essential when dealing with many problems in celestial mechanics, including the analytic solution of the torque-free rotational motion of a rigid body around its barycenter.  相似文献   
144.
For use in numerical studies of rotational motion, a set of elements is introduced for the torque-free rotational motion of a rigid body around its barycenter. The elements are defined as the initial values of a modification of the Andoyer canonical variables. A computational procedure is obtained for determining these elements from the combination of the spin angular momentum vector and a triad defining the orientation of the rigid body. A numerical experiment shows that the errors of transformation between the elements and variables are sufficiently small. The errors increase linearly with time for some elements and quadratically for some others.  相似文献   
145.
Abstract: The Onsen acid‐sulphate type of mineralization is located in the Desmos caldera, Manus back‐arc basin. Hydrothermal precipitates, fresh and altered basaltic andesite collected from the Desmos caldera were studied to determine mineralization and mobility of elements under seawater dominated condition of hydrothermal alteration. The mineralization is characterized by three stages of advanced argillic alteration. Alteration stage I is characterized by coarse subhedral pyrophyllite with disseminated anhedral pyrite and enargite which were formed in the temperature range of 260–340°C. Alteration stage II which overprinted alteration stage I was formed in the temperature range of 270–310°C and is characterized by euhedral pyrite, quartz, natroalunite, cristobalite and mixed layer minerals of smectite and mica with 14–15 Å XRD peak. Alteration stage III is characterized by amorphous silica, native sulphur, covellite, marcasite and euhedral pyrite, which has overprinted alteration stages I and II. Relative to the fresh basaltic andesite samples, the rims and cores of the partly altered basaltic andesite samples have very low major, minor and rare earth elements content except for SiO2 which is much higher (58–78 wt%) than SiO2 content of the fresh basaltic andesite (55 wt%). REE patterns of the partly altered basaltic andesite specimens are variably depleted in LREE and have pronounced negative Eu anomalies. Normalization of major, minor and REE content of the partly altered basaltic andesites to the fresh basaltic andesite indicates that all the elements except for SiO2 in the partly altered basaltic andesite are strongly lost (e.g. Al2O3 = ‐8.3 to ‐10.9 g/100cm3, Ba = ‐2.2 to ‐5.6 mg/100cm3, La = ‐130 to ‐200 μg/100cm3) during the alteration process. Abnormal depletion of MgO, total Fe as Fe2O3, LREE especially Eu and enrichment of SiO2 in the altered basaltic andesites from the Desmos caldera seafloor is caused by interaction of hot acidic hydrothermal fluid, which originates from a mixing of magmatic fluid and seawater.  相似文献   
146.
Abstract: The North granitic body of the Miyako pluton is located in the Northern Kitakami belt, Northeast Japan. The formation of the scheelite–chalcopyrite–magnetite–bearing aplitic veins and scheelite–chalcopyrite–magnetite–bearing Yamaguchi skarn deposit was closely associated with the formation of the Miyako plutons. Petrographic facies of the North granitic body vary from quartz diorite in marginal zone (zone A), to tonalite and granodiorite (zone B), and to granite (zone C) in the central. The large numbers of aplitic veins distributed around the Yamaguchi mining area are divided into two groups: barren and scheelite–mag–netite–chalcopyrite–bearing aplitic veins. The latter cut massive clinopyroxene skarns of the Yamaguchi deposit, and are composed of plagioclase, K‐feldspar and titanite. Some plagioclase crystals have dusty cores with irregularly shaped K‐feldspar flakes, and clear rims of albite. Textures of plagioclase in the mineralized aplitic veins are different from the idiomorphic textures with sharp plagioclase crystal boundaries that occur in the North granitic body and barren aplitic veins. These textural data suggest that the mineralized aplitic veins were formed from hydrothermal fluid. Changes in the contents of major and minor (Rb, Sr, Sc, Co, Th, U) elements in the North Miyako granitic body are similar to those of zoned plutons formed by typical magmatic differentiation processes. On the other hand, concentrations of REE, especially middle to heavy REE, of granitic rocks in zone C and barren aplitic veins are significantly lower than those of granitic rocks in zones A and B. The hypothetical chondrite‐normalized REE patterns, calculated assuming fractional crystallization from zone B granitic melt, suggest that REE concentrations of the residual melt increased with the degree of fractional crystallization, and changed into a pattern with enriched LREE and strongly negative Eu anomaly. However, the REE patterns of granitic rocks in zone C are different from the hypothetical patterns. Moreover, the REE patterns of magnetite–scheelite–chalcopyrite aplitic veins are quite different from those of granitic rocks. The Cu contents of granitic rocks in the North Miyako body increase from zone A (5–26 ppm) to zone B (10–26 ppm), and then clearly decrease to zone C (5–7 ppm) and drastically increase to the barren aplitic veins (39–235 ppm). Concentrations of Cu in the mineralized aplitic veins are also higher than those of the granitic rocks in zone C. The decrease in REE and Cu contents of granitic rocks from zone B to zone C is not a result of simple magmatic fractional differentiation. Fluid inclusions in quartz from mineralized aplitic veins contain 3.3 wt% NaCl equivalent and 5.8 wt% CO2. It was also demonstrated experimentally that the removal of MREE and HREE by fluid from melt enabled the formation of complexes of REE and ligands of OH and CO32‐. Based on the possibility that the melt of the granitic rocks of zone C and the mineralized aplitic veins coexisted with CO2‐bearing fluid, it is thought that REE were extracted from the melt to the CO2‐bearing fluid, and that the REE in the mineralized aplitic veins were transported by the CO2‐bearing fluid. It is likely that the low HREE and Cu contents of the granitic rocks in zone C could have been caused by the removal of those elements from the granitic melt by the fluid coexisting with the melt. The expelled materials could have been the sources of scheelite–magnetite–chalcopyrite–bearing aplitic veins and copper mineralization of the Yamaguchi Cu‐W skarn deposit.  相似文献   
147.
In order to move the polar singularity of arbitrary spherical harmonic expansion to a point on the equator, we rotate the expansion around the y-axis by \(90^{\circ }\) such that the x-axis becomes a new pole. The expansion coefficients are transformed by multiplying a special value of Wigner D-matrix and a normalization factor. The transformation matrix is unchanged whether the coefficients are \(4 \pi \) fully normalized or Schmidt quasi-normalized. The matrix is recursively computed by the so-called X-number formulation (Fukushima in J Geodesy 86: 271–285, 2012a). As an example, we obtained \(2190\times 2190\) coefficients of the rectangular rotated spherical harmonic expansion of EGM2008. A proper combination of the original and the rotated expansions will be useful in (i) integrating the polar orbits of artificial satellites precisely and (ii) synthesizing/analyzing the gravitational/geomagnetic potentials and their derivatives accurately in the high latitude regions including the arctic and antarctic area.  相似文献   
148.
A new type of pycnostad has been identified in the western subtropical-subarctic transition region of the North Pacific, based on the intensive hydrographic survey carried out in July, 2002. The potential density, temperature and salinity of the pycnostad were found to be 26.5–26.7 σ θ , 5°–7°C and 33.5–33.9 psu respectively. The pycnostad is denser, colder and fresher than those of the North Pacific Central Mode Water and different from those of other known mode waters in the North Pacific. The thickness of the pycnostad is comparable to that of other mode waters, spreading over an area of at least 650 × 500 km around 43°N and 160°E in the western transition region. Hence, we refer to the pycnostad as Transition Region Mode Water (TRMW). Oxygen data, geostrophic current speed and climatology of mixed layer depth in the winter suggest that the TRMW is formed regularly in the deep winter mixed layer near the region where it was observed. Analysis of surface heat flux also supports the idea and suggests that there is significant interannual variability in the property of the TRMW. The TRMW is consistently distributed between the Subarctic Boundary and the Subarctic Front. It is also characterized by a wide T-S range with similar density, which is the characteristic of such a transition region between subtropical and subarctic water masses, which forms a density-compensating temperature and salinity front. The frontal nature also tends to cause isopycnal intrusions within the pycnostad of the TRMW.  相似文献   
149.
Abstract. The Onsen site is an active submarine hydrothermal system hosted by the Desmos caldera in the Eastern Manus Basin, Papua New Guinea. The hydrothermal fluid is very acidic (pH=1.5) and abundant native sulfur is deposited around the vent. The δ34S values of native sulfur range from -6.5 to -9.3 %o. δ34S values of H2S and SO4 in the hydrothermal fluid are -4.3 to -9.9 %o and +18.6 to +20.0 %o, respectively. These δ34S values are significantly lower than those of the other hydrothermal systems so far reported. These low δ34S values and the acidic nature of the vent fluids suggest that volcanic SO2 gas plays an important role on the sulfur isotope systematic of the Onsen hydrothermal system. Relationship among the δ34S values of S-bearing species can be successively explained by the model based on the disproportionation reaction starting from the volcanic SO2 gas. The predicted δ34S values of SO2 agree with the measured whole rock δ34S values. δD and δ18O values of clay minerals separated from the altered rock samples also suggest the contribution of the magmatic fluid to the hydrothermal system. Present stable isotopic study strongly suggests that the Onsen hydrothermal site in the Desmos caldera is a magmatic submarine hydrothermal system.  相似文献   
150.
Abstract. The hydrothermal alteration in Ghuzayn Volcanics was associated with mineralization and accumulation of three massive sulfide deposits. The Ghuzayn Volcanics were discriminated into basaltic and andesitic lavas. The crossplots of Zr versus Nb, Y, Hf, La and Lu show that they fall in the same linear fractionation trends with more evolved affinities in the andesitic lavas compared to the less evolved affinities in the basaltic lavas. The immobile trace element contents of the Ghuzayn Volcanics show that they are of oceanic to continental tholeiitic affinity which fall in the fields of back‐arc basin basalt, N‐MORB and island arc tholeiite all meet and match with the field of the Lau‐Tonga back‐arc basin lavas. The ore‐body No. 2 is underlain by a zone of intense argillization and silicification which are so‐called alteration pipe as in some of the Cyprus‐type massive sulfide deposits. The alteration in the proximity of the ore‐body No. 2 is characterized by a zone of epidotization and slight silicification and sulfide disseminations, and surrounded by another zone of slight silicification and sulfide dissemination in the outermost rim around the ore‐body No. 2. The alteration zones in the proximity of the ore‐body No. 2 were divided into Zones I and II based on the abundance of the secondary minerals in the altered basaltic lavas. The Zone I is located in the most northern upper part of the ore‐body No. 2 and characterized by corrensite, saponite and prehnite. However, the Zone II is located in the southern part of the ore‐body No. 2 and characterized by chlorite and epidote. Both alteration zones were formed by different alteration stages. Stage 1 was formed by non to partly reacted fluids, to crystallize Mg‐chlorite and albite at temperatures ranging from 150 to 250d?C. Further, these fluids evolved with time and became Mg‐depleted, Si‐ and metal‐enriched to crystallize Fe2+‐chlorite, epidote, quartz and sulfides at temperatures ranging from 250 to 350d?C in stage 2. Later, these fluids were evolved again to be Mg‐ and Ca‐enriched in stage 3 to crystallize prehnite, laumontite, corrensite and saponite at temperatures ranging from 150 to 220d?C. Late zeolite and calcite have overgrown the previously crystallized phases and crosscutting veins along the altered basaltic lavas in stage 4. Finally, the lavas were cracked and refractured to facilitate penetration of seawater into deeper parts to heat up again and re‐leach the silica and metals in a new mineralizing event.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号