首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   3篇
  国内免费   1篇
地球物理   15篇
地质学   29篇
海洋学   20篇
天文学   2篇
综合类   1篇
自然地理   2篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   2篇
  2011年   5篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   3篇
  2004年   6篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  2000年   3篇
  1998年   2篇
  1996年   1篇
  1995年   4篇
  1993年   1篇
  1984年   1篇
  1978年   1篇
排序方式: 共有69条查询结果,搜索用时 515 毫秒
51.
52.
The Hirabayashi borehole (Awaji Island, Japan) was drilled by the Geological Survey of Japan (GSJ) 1 year after the Hyogo-ken Nanbu (Kobe) earthquake (1995, MJMA=7.2). This has enabled scientists to study the complete sequence of deformation across the active Nojima fault, from undeformed granodiorite to the fault core. In the fault core, different types of gouge and fractures have been observed and can be interpreted in terms of a complex history of faulting and fluid circulation. Above the fault core and within the hanging wall, compacted cataclasites and gouge are cut by fractures which show high apparent porosity and are filled by 5–50 μm euhedral and zoned siderite and ankerite crystals. These carbonate-filled fractures have been observed within a 5.5-m-wide zone above the fault, but are especially abundant in the vicinity (1 m) of the fault. The log-normal crystal size distributions of the siderite and ankerite suggest that they originated by decaying-rate nucleation accompanied by surface-controlled growth in a fluid saturated with respect to these carbonates. These carbonate-filled fractures are interpreted as the result of co-seismic hydraulic fracturing and upward circulation of fluids in the hanging wall of the fault, with the fast nucleation of carbonates attributed to a sudden fluid or CO2 partial pressure drop due to fracturing. The fractures cut almost all visible structures at a thin section scale, although in some places, the original idiomorphic shape of carbonates is modified by a pressure-solution mechanism or the carbonate-filled fractures are cut and brecciated by very thin gouge zones; these features are attributed to low and high strain-rate mechanisms, respectively. The composition of the present-day groundwater is at near equilibrium or slightly oversaturated with respect to the siderite, calcite, dolomite and rhodochrosite. Taken together, this suggests that these fractures formed very late in the evolution of the fault zone, and may be induced by co-seismic hydraulic fracturing and circulation of a fluid with a similar composition to the present-day groundwater. They are therefore potentially related to recent earthquake activity (<1.2 Ma) on the Nojima fault.  相似文献   
53.
This study analyzed 267 landslide landforms (LLs) in the Kumamoto area of Japan from the database of about 0.4 million LLs for the whole of Japan identified from aerial photos by the National Research Institute for Earth Science and Disaster Resilience of Japan (NIED). Each LL in the inventory is composed of a scarp and a moving mass. Since landslides are prone to reactivation, it is important to evaluate the sliding-recurrence susceptibility of LLs. One possible approach to evaluate the susceptibility of LLs is slope stability analysis. A previous study found a good correlation (R 2 = 0.99) between the safety factor (F s ) and slope angle (α) of F s  = 17.3α ?0.843. We applied the equation to the analysis of F s for 267 LLs in the area affected by the 2016 Kumamoto earthquake (M j  = 7.3). The F s was calculated for the following three cases of failure: scarps only, moving mass only, and scarps and moving mass together. Verification with the 2016 Kumamoto earthquake event shows that the most appropriate method for the evaluation of LLs is to consider the failure of scarps and moving mass together. In addition, by analyzing the relationship between the factors of slope of entire landslide and slope of scarp for LLs and comparing the results with the Aso-ohashi landslide, the largest landslide caused by the 2016 Kumamoto earthquake, we also found that morphometric analysis of LLs is useful for forecasting the travel distance of future landslides.  相似文献   
54.
Keiko  Hattori  Simon  Wallis  Masaki  Enami  Tomoyuki  Mizukami 《Island Arc》2010,19(1):192-207
The Higashi-akaishi garnet-bearing ultramafic body in the Sanbagawa metamorphic belt, Southwest Japan, represents a rare example of oceanic-type ultrahigh-pressure metamorphism. The body of 2 km × 5 km is composed mostly of anhydrous dunite with volumetrically minor lenses of clinopyroxene-rich rocks. Dunite samples contain high Ir-type platinum group elements (PGE) and Cr in bulk rocks, high Mg and Ni in olivine, and high Cr in spinel. On the other hand, clinopyroxene-rich rocks contain low concentrations of Ir-type PGE and Cr, high concentrations of fluid-mobile elements in bulk rocks, and low Ni and Mg in olivine. Clinopyroxene is diopsidic with low Al2O3. The compositions of bulk rocks and mineral chemistry of spinel, olivine, and clinopyroxene suggest that the olivine-dominated rocks are residual mantle peridotites after high degrees of influx partial melting, and that the clinopyroxene-rich rocks are cumulates of subduction-related melts. Thus, the Higashi-akaishi ultramafic body originated from the interior of the mantle wedge, most likely the forearc upper mantle. It was then incorporated into the Sanbagawa subduction channel by a mantle flow, and underwent high pressure metamorphism to a depth greater than 100 km. Such a strong active flow in the mantle wedge is likely facilitated by the lack of serpentinites along the interface between the slab and the overlying mantle, as it was too hot for serpentine. These unusually hot conditions and strong active mantle flow may reflect conditions in the earliest stage of development of subduction, and may have been maintained by massive upwelling and subsequent eastward flow of asthenospheric mantle in the northeastern Asian continent in Cretaceous time when the Sanbagawa belt began to form.  相似文献   
55.
We have developed a new geodetic inversion method for space–time distribution of fault slip velocity with time-varying smoothing regularization in order to reconstruct accurate time histories of aseismic fault slip transients. We introduce a temporal smoothing regularization on slip and slip velocity through a Bayesian state space approach in which the strength of regularization (temporal smoothness of slip velocity) is controlled by a hyperparameter. The time-varying smoothing regularization is realized by treating the hyperparameter as a time-dependent stochastic variable and adopting a hierarchical Bayesian state space model, in which a prior distribution on the hyperparameter is introduced in addition to a conventional Bayesian state space model. We have tested this inversion method on two synthetic data sets generated by simulated aseismic slip transients. Results show that our method reproduces well both rapid changes of slip velocity and steady-state velocity without significant oversmoothing and undersmoothing, which has been hard to overcome by the conventional Bayesian approach with time-independent smoothing regularization. Application of this method to transient deformation in 2002 caused by a silent earthquake off the Boso peninsula, Japan, also shows similar advantages of this method over the conventional approach.  相似文献   
56.
The temporal evolution of a thin phytoplankton layer was observed by field measurements using a research vessel and mooring instruments in the Yatsushiro Sea, a semi-enclosed narrow embayment in Japan, in early August 2013. The subsurface chlorophyll maximum developed into a thin layer within 2 days just below the pycnocline at around 10-m depth, where turbulent mixing (the dissipation rate of turbulent kinetic energy) was weak (low). The layer persisted for 1.5 to 2 days and declined after irradiance drastically decreased at the sea surface. At the peak period, the layer thickness, which is defined as the full-width at half-maximum of the peak in chlorophyll a concentration, ranged from 0.6 to 1.4 m, and the maximum concentration reached 42.3 mg m?3. The horizontal extent of the layer was approximately 10 km along the longitudinal axis of the bay. The phytoplankton population characterized by the layer was dominated by a chain-forming centric diatom, Chaetoceros spp. The formation mechanisms of the thin diatom layer were investigated using the observed data and a vertical one-dimensional model that includes physical and biological processes. The results suggest that the development of the thin layer was caused by in situ growth and aggregation due to nutrient-dependent sinking of the species under weak turbulence. The study highlights that continuous multidisciplinary observations and understanding species-specific physiological responses to environmental variations are necessary to elucidate drastically fluctuating phytoplankton dynamics in a coastal water.  相似文献   
57.
A new sledge net system using propulsion vehicles has been developed to sample more efficiently the demersal juveniles of marine organisms. A net attached to a sledge maneuvered by a SCUBA diver who uses operating switches on a steering handle to adjust the altitude of the sledge and the position of the tickler chains to ensure that the footcloth of the mouth of the net remains in constant contact with the bottom surface. Video camera, flow meter, compass, and dive computers are positioned on the sledge net in the view of the diver. Given that the system can attain speeds of 70 cm s−1, the net can be employed to capture highly mobile fish. Unlike most boat-based net sampling methods, the use of propulsion vehicles means that there are no sound or vibration disturbances due to the boat and tow ropes typically used to maneuver these types of sampling nets. Marine fauna was collected at monthly intervals over a two-year period in a sampling area along the southern coast of Hokkaido, Japan. A total of 2641 specimens comprising 61 species and including five species which were the first records for the region were collected. These findings suggest that the new sledge net system employing propulsion vehicles was effective for sampling demersal juveniles, particularly in situations where sledge nets towed by boats or push nets cannot be deployed.  相似文献   
58.
An accurate prediction of ocean tides in southeast Alaska is developed using a regional, barotropic ocean model with a finite difference scheme. The model skill is verified by the observational tidal harmonics in southeast Alaska including Glacier Bay. The result is particularly improved in Glacier Bay compared to the previous model described by Foreman et al. (2000). The model bathymetry dominates the model skill. We re-estimate tidal energy dissipation in the Alaska Panhandle and suggest a value for tidal energy dissipation of 3.4 GW associated with the M2 constituent which is 1.5 times the estimation of Foreman et al. (2000). A large portion of the M2 energy budget entering through Chatham Strait is dissipated in the vicinity of Glacier Bay. Moreover, it is shown that the developed model has the potential to correct the ocean tide loading effect in geodetic data more efficiently than the model of Foreman et al. (2000), especially around Glacier Bay.  相似文献   
59.
Settling particles were sampled monthly for 1 year using an automated time-series sediment trap positioned at similar depths at two sites of high diatomaceous productivity in the North Pacific Ocean and Bering Sea. The particles were analyzed for rare earth elements (REEs) by inductively coupled plasma mass spectrometry (ICP-MS) with and without chemical treatment of the bulk samples to isolate siliceous fractions. The REE composition of the bulk samples is explained largely by the contribution of two distinct components: (i) carbonate with a higher REE concentration, a negative Ce anomaly and lighter REE (LREE) enrichment; (ii) opal with a lower REE concentration, a weaker negative Ce anomaly and heavier REE (HREE) enrichment.The siliceous fractions of settling particles are characterized by high Si/Al ratios (30-190), reflecting high diatom productivity at the studied sites. The La/Al ratio of the siliceous fraction is close to that of the upper crust, but the Lu/Al and Lu/La ratios are significantly higher than those of the upper crust or airborne particles, indicating the presence of excess HREEs in the siliceous fraction. Diatoms are believed to be important carriers of HREEs.The Ce anomaly, Eu anomaly, slope of the REE pattern, and ΣREE of the siliceous fraction vary exponentially with decreasing total mass flux. They can be well-reproduced according to the differential dissolution kinetics of elements in the order of Ce < lighter REEs (LREEs) < Eu = heavier REEs (HREEs) < Si from settling particles, where the dissolution rate is critically reduced through particle aggregation. This order is consistent with the vertical distribution of dissolved REEs and Si in oceans. The differential dissolution kinetics leads to HREE enrichment of the original diatoms and REE enrichment of dissolved diatoms. The Lu/Si ratio of the siliceous fraction of settling particles recovered from some of the highest diatom fluxes is identical to that of the two elements dissolved in deep seawater, providing further evidence for the dissolution of siliceous matter in deep water.  相似文献   
60.
Degree of partial melting of pelitic migmatites from the Aoyama area, Ryoke metamorphic belt, SW Japan is determined utilizing whole-rock trace element compositions. The key samples used in this study were taken from the migmatite front of this area and have interboudin partitions filled with tourmaline-bearing leucosome. These samples are almost perfectly separated into leucosome (melt) and surrounding matrix (solid). This textural feature enables an estimate of the melting degree by a simple mass-balance calculation, giving the result of 5–11 wt.% of partial melting. Similar calculations applied to the migmatite samples, which assume average migmatite compositions to be the residue solid fraction, give degree of melt extraction of 12–14 wt.% from the migmatite zone. The similarity of the estimated melting degree of 5–11 wt.% with that in other tourmaline–leucogranites, such as Harney Peak leucogranite and Himalayan leucogranites, in spite of differences in formation process implies that the production of tourmaline leucogranites is limited to low degrees of partial melting around 10 wt.%, probably controlled by the breakdown of sink minerals for boron such as muscovite and tourmaline at a relatively early stage of partial melting. Because the amount of boron originally available in the pelitic source rock is limited (on average 100 ppm), 10 wt.% of melting locally requires almost complete breakdown of boron sink mineral(s) in the source rock, in order to provide sufficient boron into the melt to saturate it in tourmaline. This, in turn, means that boron-depleted metapelite regions are important candidates for the source regions of tourmaline leucogranites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号