首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   3篇
  国内免费   1篇
测绘学   4篇
大气科学   25篇
地球物理   25篇
地质学   16篇
海洋学   5篇
天文学   36篇
自然地理   2篇
  2023年   2篇
  2021年   6篇
  2020年   5篇
  2019年   6篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2015年   2篇
  2014年   16篇
  2013年   4篇
  2012年   6篇
  2011年   1篇
  2010年   9篇
  2009年   5篇
  2008年   7篇
  2007年   3篇
  2006年   8篇
  2005年   6篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1989年   1篇
  1987年   1篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有113条查询结果,搜索用时 31 毫秒
91.
Predictability of the subtropical dipole modes is assessed using the SINTEX-F coupled model. Despite the known difficulty in predicting subtropical climate due to large internal variability of the atmosphere and weak ocean–atmosphere coupling, it is shown for the first time that the coupled model can successfully predict the South Atlantic Subtropical Dipole (SASD) 1 season ahead, and the prediction skill is better than the persistence in all the 1–12 month lead hindcast experiments. There is a prediction barrier in austral winter due to the seasonal phase locking of the SASD to austral summer. The prediction skill is lower for the Indian Ocean Subtropical Dipole (IOSD) than for the SASD, and only slightly better than the persistence till 6-month lead because of the low predictability of the sea surface temperature anomaly in its southwestern pole. However, for some strong IOSD events in the last three decades, the model can predict them 1 season ahead. The co-occurrence of the negative SASD and IOSD in 1997/1998 austral summer can be predicted from July 1st of 1997. This is because the negative sea level pressure anomalies over the South Atlantic and the southern Indian Ocean in September–October (November–December) that trigger the occurrence of the negative SASD and IOSD are related to the well predicted tropical Indian Ocean Dipole (El Niño/Southern Oscillation). Owing to the overall good performances of the SINTEX-F model in predicting the SASD, some strong IOSD, and El Niño/Southern Oscillation, the prediction skill of the southern African summer precipitation is high in the SINTEX-F model.  相似文献   
92.
A recently identified climate mode called Ningaloo Niño (Niña) is associated with positive (negative) sea surface temperature (SST) anomalies off the west coast of Australia and negative (positive) sea level pressure (SLP) anomalies in the overlying atmosphere. By conducting a series of numerical experiments with an atmospheric general circulation model, generation mechanisms of the atmospheric circulation anomalies accompanied by Ningaloo Niño/Niña are examined. Even when SST is allowed to vary interannually only in the eastern South Indian Ocean, negative (positive) SLP anomalies are formed off the west coast of Australia in Ningaloo Niño (Niña) years, supporting the existence of local ocean–atmosphere interaction. When the model is forced by SST anomalies outside of the eastern South Indian Ocean, negative (positive) SLP anomalies are also generated in Ningaloo Niño (Niña) years owing to a Matsuno–Gill type response to atmospheric convection anomalies in the tropical Pacific. It is found that the latter impact is stronger in the current atmospheric general circulation model. Regarding climatic impacts, it is shown that Ningaloo Niño (Niña) induces wet (dry) anomalies over the northwestern part of Australia even when SST anomalies outside of the eastern South Indian Ocean are excluded from the SST forcing.  相似文献   
93.
We report two new eclogite localities (at Kanayamadani and Shinadani) in the high‐P (HP) metamorphic rocks of the Omi area in the western most region of Niigata Prefecture, Japan, which form part of the Hida Gaien Belt, and determine metamorphic conditions and pressure–temperature (PT) paths. The metamorphic evolution of the eclogites is characterized by a tight hairpin‐shaped PT path from prograde epidote–blueschist facies to peak eclogite facies and then retrograde blueschist facies. The prograde metamorphic stage is characterized by various amphibole (winchite, barroisite, glaucophane) inclusions in garnet, whereas the peak eclogite facies assemblage is characterized by omphacite, garnet, phengite and rutile. Peak PT conditions of the eclogites were estimated to be ~600°C and up to 2.0 GPa by conventional cation‐exchange thermobarometry, Ti‐in‐zircon thermometry and quartz inclusion Raman barometry respectively. However, the Raman spectra of carbonaceous material thermometry of metapelites associated with the eclogites gave lower peak temperatures, possibly due to metamorphism at different conditions before being brought together during exhumation. The blueschist facies overprint following the peak of metamorphism is recognized by the abundance of glaucophane in the matrix. Zircon grains in blueschist facies metasedimentary samples from two localities adjacent to the eclogites have distinct oscillatory‐zoned cores and overgrowth rims. Laser ablation inductively coupled plasma mass spectrometry U–Pb ages of the detrital cores yield a wide range between 3,200 and 400 Ma, with a peak at 600–400 Ma. In the early Palaeozoic, proto‐Japan was located along the continental margin of the South China craton, providing the source of the older population of detrital zircon grains (3,200–600 Ma) deposited in the trench‐fill sediments. In addition, subduction‐related magmatism c. 500–400 Ma is recorded in the crust below proto‐Japan, which might have been the source for the younger detrital zircon grains. The peak metamorphic age was constrained by SHRIMP dating of the overgrowth rims, yielding Tournaisian ages of 347 ± 4 Ma, suggesting subduction in the early Carboniferous. Our results provide clear constraints on the initiation of subduction, accretion and the development of an arc‐trench system along the active continental margin of the South China craton and help to unravel the Palaeozoic tectonic history of proto‐Japan.  相似文献   
94.
The Sanbagawa belt is one of the famous subduction‐related high‐pressure (HP) metamorphic belts in the world. However, spatial distributions of eclogite units in the belt have not yet satisfactorily established, except within the Besshi region, central Shikoku, southwest Japan because most eclogitic rocks were affected by lower pressure overprinting during exhumation. In order to better determine the areal distribution of the eclogite units and their metamorphic features, inclusion petrography of garnet porphyroblasts using a combination of electron probe microanalyser and Raman spectroscopy was applied to pelitic and mafic schists from the Asemi‐gawa region, central Shikoku. All pelitic schist samples are highly retrogressed, and include no index HP minerals such as jadeite, omphacite, paragonite, or glaucophane in the matrix. Garnet porphyroblasts in pelitic schists occur as subhedral or anhedral crystals, and show compositional zoning with irregular‐shaped inner segments and overgrown outer segments, the boundary of which is marked by discontinuous changes in spessartine. This feature suggests that a resorption process of the inner segment occurred prior to the formation of the outer segment, indicating discontinuous crystallization between the two segments. The inner segment of some composite‐zoned garnet grains displays Mn oscillations, implying infiltration of metamorphic fluid during the initial exhumation stage. Evidence for an early eclogite facies event was determined from mineral inclusions (e.g., jadeite, paragonite, glaucophane) in the garnet inner segments. Mafic schists include no index HP minerals in the matrix as with pelitic schists. Garnet grains in mafic schists show simple normal zoning, recording no discontinuous growth during crystal formation. There are no index HP mineral inclusions in the garnet, and thus no evidence suggesting eclogite facies conditions. Quartz inclusions in garnet of the pelitic and mafic schists show residual pressure values (?ω1) of >8.5 cm?1 and <8.5 cm?1 respectively. The combination of Raman geobarometry and conventional thermodynamic calculations gives peak PT conditions of 1.6–2.1 GPa at 460–520°C for the pelitic schists. The ?ω1 values of quartz inclusions in mafic schists are converted to a metamorphic pressure of 1.2–1.4 GPa at 466–549°C based on Raman geothermometry results. These results indicate that a pressure gap definitely exists between the mafic schists and the almost adjacent pelitic schists, which have experienced a different metamorphic history. Furthermore, the peak P–T values of the Asemi‐gawa eclogite unit are compatible with those of Sanbagawa eclogite unit in the Besshi region of central Shikoku, suggesting that these eclogite units share a similar P–T trajectory. The Asemi‐gawa eclogite unit exists in a limited area and is composed of mostly pelitic schists. We infer that these abundant pelitic schists played a key role in buoyancy‐driven exhumation by reducing bulk rock density and strength.  相似文献   
95.
Flooding is one of the greatest disasters that produces strong effects on the ecosystem and livelihoods of the local population. Flood frequency is expected to increase globally making its risk assessment an urgent issue. In spring-summer 2017, an extreme flooding occurred in the Indigirka River lowland of Northeastern Siberia that inundated a large area. In this study, the extent and climatic drivers of the flooding were determined using the results of field observations, satellite images, and climate reanalysis dataset, and its possible effects on the ecosystem were discussed. In 2017, a significant lowland area of around 16,016 km2 was covered with water even in July, which was 5,217 km2 (around 4% of the total area) greater than the water-covered area in 2015 when usual hydrological condition in the area was observed. The hydrographic signature obtained for the Indigirka River water level in 2017 was unusual. Although the water level rose sharply at the end of May (which was typical for the Arctic region), it did not fall afterwards and even increased again to an annual daily maximum value in the middle of July. The climate reanalysis dataset obtained for the temporal–spatial variations of snow water equivalent, snowmelt, and runoff over the lowland revealed that a large amount of snowmelt runoff in June and July 2017 produced a large water-covered area and unusually high river water levels that lasted until summer. Snow depth from winter to spring was largest in 2017 over the period from 2009 to 2017, and the surface of the lower reach of the lowland was partially covered with snow even in the end of June due to the extreme snowfall that occurred in October 2016. Such unusual hydrological conditions waterlogged most trees over the lowland, which caused serious ecosystem devastation and changes in the material cycle.  相似文献   
96.
The forcing efficiency for the first and the second baroclinic modes by the wind stress in tropical oceans has been discussed by calculating equivalent forcing depth from annual mean, seasonal, and pentadal density profiles of the observational data. In the annual mean field, the first mode is forced preferentially in the western Pacific and the Indian Ocean, whereas the second mode is more strongly excited in the Atlantic and the eastern Pacific. This difference is mostly due to the pycnocline depth; the second mode is more dominantly forced where the pycnocline depth is shallower. We also revealed large seasonal variations of the second mode's equivalent forcing depth in the western Indian Ocean. The first mode is more dominantly forced during boreal spring and fall in the western Indian Ocean, while the second mode becomes more dominantly forced during boreal summer and winter. Those are due to seasonal variations of both the zonal wind and the pycnocline depth. Moreover, we show that the excitation of the second mode in the western Pacific increases after the late 1970s, which is associated with the decreasing trend of the zonal pycnocline gradient. Revealing the variation of the equivalent forcing depth will be useful for understanding the oceanic response to winds in tropical oceans and the improvement in the predictability of air-sea coupled climate variability in the tropics.  相似文献   
97.
This paper presents a study for the development of a system capable of performing real-time pseudo dynamic testing. The system combines the basics of the pseudo dynamic test with a dynamic actuator, a digital displacement transducer and a digital servo-mechanism. The digital servo-mechanism has been introduced to ensure accurate displacement and velocity control, in which digital feedback control with a time interval of 2 msec has been performed continuously during actuator motion. Using the system, pseudo dynamic tests under sinusoidal and earthquake ground motion are carried out for a structure having a viscous damper, demonstrating that a perfectly real-time pseudo dynamic test can be achieved by incorporating the modified central difference method into an extra buffer operation of the digital servo-mechanism. The responses solved by the pseudo dynamic tests are compared with the responses of the test structure as well as those obtained from post-numerical analysis, and it is found that the real-time pseudo dynamic test conducted in this study is accurate.  相似文献   
98.
A sediment layer (43 cm thick) and surface sediments (5 cm thick) in a submarine limestone cave (31 m water depth) on the fore-reef slope of Ie Island, off Okinawa mainland, Japan, were examined by visual, mineralogical and geochemical means. Oxygen isotope analysis was performed on the cavernicolous micro-bivalve Carditella iejimensis from both cored sediments and surface sediments, and the water temperature within the cave was recorded for nearly one year. These data show that: (1) water temperature within the cave is equal to that at 30 m deep in the open sea; (2) the biotic and non-biotic environments within the cave have persisted for the past 2000 years; (3) mud-size carbonate detritus is a major constituent of the submarine-cave deposit, and may have come mainly from the suspended carbonate mud produced on the emergent Holocene reef flat over the past two millennia; (4) the δ18O-derived temperature (Tδ18O) of C. iejimensis suggests that the species grows between April and July; (5) the Tδ18O of C. iejimensis from cored sediments implies that there were two warmer intervals, at AD 340 ± 40 and AD 1000 ± 40, which correspond to the Roman Warm Period and Medieval Warm Period, respectively. These suggest that submarine-cave sediments provide unique information for Holocene reef development. In addition, oxygen isotope records of cavernicolous C. iejimensis are a useful tool to reconstruct century-scale climatic variability for the Okinawa Islands during the Holocene.  相似文献   
99.
Abstract— A petrologic and TEM study of a remarkable dark inclusion (DI) in the Ningqiang CV3 chondrite reveals that it is a mixture of highly primitive solar nebula materials. The DI contains two lithologies. The first, lithology A, contains micron‐sized olivine and pyroxene grains rimmed by amorphous materials with compositions similar to the underlying crystalline grains. The second, lithology B, appears to preserve the mineralogy of lithology A before formation of the amorphous rims. Overall, the Ningqiang DI appears to record the following processes: 1) formation (condensation and Fe‐enrichment) of olivine crystals in the nebula with compositions of Fo42–62; 2) irradiation, resulting in amorphitization of the olivine and pyroxene to varying degrees; 3) partial annealing, resulting in formation of fairly large, euhedral olivine and pyroxene grains with remnant amorphous sharply‐bounded rims; 4) in some cases, prolonged annealing, resulting in the formation of microcrystalline olivine or pyroxene rims. The latter annealing would have been a natural consequence of irradiation near the critical temperature for olivine; and 5) mixture of the above materials (lithology A) with nebular condensate high‐Ca pyroxene and olivine, which escaped nebular processing, to become lithology B. We suggest that the amorphous rims in lithology A formed in an energetic solar event such as a bi‐polar outflow or FU‐orionis flare.  相似文献   
100.
Abstract— From November 1998 to January 1999, the 39th Japanese Antarctic Research Expedition (JARE) conducted a large‐scale micrometeorite collection at 3 areas in the meteorite ice field around the Yamato Mountains, Antarctica. The Antarctic micrometeorites (AMMs) collected were ancient cosmic dust particles. This is in contrast with the Dome Fuji AMMs, which were collected previously from fresh snows in 1996 and 1997 and which represent modern micrometeorites. To determine the noble gas concentrations and isotopic compositions of individual AMMs, noble gas analyses were carried out using laser‐gas extraction for 35 unmelted Yamato Mountains AMMs and 3 cosmic spherules. X‐ray diffraction analyses were performed on 13 AMMs before the noble gas measurement and mineral compositions were determined. AMMs are classified into 4 main mineralogical groups, defined from the heating they suffered during atmospheric entry. Heating temperatures of AMMs, inferred from their mineral compositions, are correlated with 4He concentrations and reflect the effect of degassing during atmospheric entry. Jarosite, an aqueous alteration product, is detected for 4 AMMs, indicating the aqueous alteration during long‐time storage in Antarctic ice. Jarosite‐bearing AMMs have relatively low concentrations of 4He, which is suggestive of loss during the alteration. High 3He/4He ratios are detected for AMMs with high 20Ne/4He ratios, showing both cosmogenic 3He and preferential He loss. SEP (solar energetic particles)‐He and Ne, rather than the solar wind (SW), were dominant in AMMs, presumably showing a preferential removal of the more shallowly implanted SW by atmospheric entry heating. The mean 20Ne/22Ne ratio is 11.27 ± 0.35, which is close to the SEP value of 11.2. Cosmogenic 21Ne is not detected in any of the particles, which is probably due to the short cosmic ray exposure ages. Ar isotopic compositions are explained by 3‐component mixing of air, Q, and SEP‐Ar. Ar isotopic compositions can not be explained without significant contributions of Q‐Ar. SEP‐Ne contributed more than 99% of the total Ne. As for 36Ar and 38Ar, the abundance of the Q component is comparable to that of the SEP component. 84Kr and 132Xe are dominated by the primordial component, and solar‐derived Xe is almost negligible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号