首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   0篇
  国内免费   1篇
测绘学   4篇
大气科学   25篇
地球物理   25篇
地质学   16篇
海洋学   5篇
天文学   36篇
自然地理   2篇
  2023年   2篇
  2021年   6篇
  2020年   5篇
  2019年   6篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2015年   2篇
  2014年   16篇
  2013年   4篇
  2012年   6篇
  2011年   1篇
  2010年   9篇
  2009年   5篇
  2008年   7篇
  2007年   3篇
  2006年   8篇
  2005年   6篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1989年   1篇
  1987年   1篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有113条查询结果,搜索用时 15 毫秒
61.
The tropical Indian Ocean climate variability is investigated using an artificial neural network analysis called self-organizing map (SOM) for both observational data and coupled model outputs. The SOM successfully captures the dipole sea surface temperature anomaly (SSTA) pattern associated with the Indian Ocean Dipole (IOD) and basin-wide warming/cooling associated with ENSO. The dipole SSTA pattern appears only in boreal summer and fall, whereas the basin-wide warming/cooling appears mostly in boreal winter and spring owing to the phase-locking nature of these phenomena. Their occurrence also undergoes significant decadal variation. Composite diagrams constructed for nodes in the SOM array based on the simulated SSTA reveal interesting features. For the nodes with the basin-wide warming, a strong positive SSTA in the eastern equatorial Pacific, a negative Southern Oscillation, and a negative precipitation anomaly in East Africa are found. The nodes with the positive IOD are associated with a weak positive SSTA in the central equatorial Pacific or positive SSTA in the eastern equatorial Pacific, a positive (negative) sea level pressure anomaly in the eastern (western) tropical Indian Ocean, and a positive precipitation anomaly over East Africa. The warming in the central equatorial Pacific appears to correspond to El Niño Modoki discussed recently. These results suggest usefulness of SOM in studying large-scale ocean–atmosphere coupled phenomena.  相似文献   
62.
We present in this study the effects of short‐term heating on organics in the Tagish Lake meteorite and how the difference in the heating conditions can modify the organic matter (OM) in a way that complicates the interpretation of a parent body's heating extent with common cosmothermometers. The kinetics of short‐term heating and its influence on the organic structure are not well understood, and any study of OM is further complicated by the complex alteration processes of the thermally metamorphosed carbonaceous chondrites—potential analogues of the target asteroid Ryugu of the Hayabusa2 mission—which had experienced posthydration, short‐duration local heating. In an attempt to understand the effects of short‐term heating on chondritic OM, we investigated the change in the OM contents of the experimentally heated Tagish Lake meteorite samples using Raman spectroscopy, scanning transmission X‐ray microscopy utilizing X‐ray absorption near edge structure spectroscopy, and ultraperformance liquid chromatography fluorescence detection and quadrupole time of flight hybrid mass spectrometry. Our experiment suggests that graphitization of OM did not take place despite the samples being heated to 900 °C for 96 h, as the OM maturity trend was influenced by the heating conditions, kinetics, and the nature of the OM precursor, such as the presence of abundant oxygenated moieties. Although both the intensity of the 1s?σ* exciton cannot be used to accurately interpret the peak metamorphic temperature of the experimentally heated Tagish Lake sample, the Raman graphite band widths of the heated products significantly differ from that of chondritic OM modified by long‐term internal heating.  相似文献   
63.
Abstract— A fine‐grained dark inclusion in the Ningqiang carbonaceous chondrite consists of relatively pristine solar nebular materials and has high concentrations of heavy primordial rare gases. Trapped 36Ar concentration amounts to 6 times 10?6 cc STP/g, which is higher than that of Ningqiang host by a factor of three. Light HF‐HCl etching of the dark inclusion removed 86, 73, and 64% of the primordial 36Ar, 84Kr, and 132Xe, respectively. Thus, the majority of the noble gases in this inclusion are located in very acid‐susceptive material. Based on the elemental composition, the noble gases lost from the dark inclusion during the acid‐treatments are Ar‐rich, and the noble gases remaining in the inclusion are Q and HL gases. Transmission electron microscopy showed that the acid treatments removed thin Si, Mg, and Fe‐rich amorphous rims present around small olivine and pyroxene grains in the dark inclusion, suggesting that the Ar‐rich gases reside in the amorphous layers. A possible origin of the Ar‐rich gases is the acquisition of noble‐gas ions with a composition fractionated relative to solar abundance favoring the heavy elements by the effect of incomplete ionization under plasma conditions at 8000 K electron temperature.  相似文献   
64.
Predicting inter-catchment groundwater flow (IGF) is essential because IGF greatly affects stream water discharge and water chemistry. However, methods for estimating sub-annual IGF and clarifying its mechanisms using minimal data are limited. Thus, we quantified the sub-annual IGF and elucidated its driving factors using the short-term water balance method (STWB) for three forest headwater catchments in Japan (named here catchment A, B and As). Our previous study using the chloride mass balance indicated that annual IGF of catchment A (49.0 ha) can be negligible. Therefore, we calculated the daily evapotranspiration (ET) rate using the Priestley–Taylor expression and the 5-year water balance in catchment A (2010–2014). The sub-annual IGF of the three catchments was then calculated by subtracting the ET rate from the difference between rainfall and stream discharge during the sub-annual water balance periods selected using the STWB. The IGF rates of catchment B (7.0 ha), which is adjacent to catchment A, were positive in most cases, indicating that more groundwater flowed out of the catchment than into it, and exhibited positive linear relationships with rainfall and stream discharge. This suggested that as the catchments became wetter, more groundwater flowed out of catchment B. Conversely, the IGF rates of catchment As (5.3 ha), included in catchment A, were negative in most cases, indicating that more groundwater flowed into the catchment than out from it, and exhibited negative linear relationships with rainfall and stream discharge. Given the topography of the catchments studied, infiltration into the bedrock was the probable reason for the IGF outflow from catchment B. We hypothesized that in catchment As, the discrepancy between the actual hydrological boundary and the surface topographic boundary could have caused an IGF inflow. This study provides a useful tool for determining an IGF model structure to be incorporated into rainfall-runoff models.  相似文献   
65.
This study examines southern African summer rainfall and tropical temperate troughs (TTTs) simulated with three versions of an atmospheric general circulation model differing only in the convection scheme. All three versions provide realistic simulations of key aspects of the summer (November–February) rainfall, such as the spatial distribution of total rainfall and the percentage of rainfall associated with TTTs. However, one version has a large bias in the onset of the rainy season. Results from self-organizing map (SOM) analysis on simulated daily precipitation data reveals that this is because the occurrence of TTTs is underestimated in November. This model bias is not related to westerly wind shear that provides favorable conditions for the development of TTTs. Rather, it is related to excessive upper level convergence and associated subsidence over southern Africa. Furthermore, the model versions are shown to be successful in capturing the observed drier (wetter) conditions over the southern African region during El Niño (La Niña) years. The SOM analysis reveals that nodes associated with TTTs in the southern (northern) part of the domain are observed less (more) often during El Niño years, while nodes associated with TTTs occur more frequently during La Niña years. Also, nodes associated with dry conditions over southern Africa are more (less) frequently observed during El Niño (La Niña) years. The models tend to perform better for La Niña events, because they are more successful in representing the observed frequency of different synoptic patterns.  相似文献   
66.
A high-sensitive technique to detect O(1S) atoms using vacuum ultraviolet laser-induced fluorescence (VUV-LIF) spectroscopy has been applied to study the O(1S) production process from the UV photodissociation of O3, N2O, and H2O2. The quantum yields for O(1S) formation from O3 photolysis at 215 and 220 nm are determined to be (1.4 ± 0.4) × 10−4 and (5 ± 3) × 10−5, respectively. Based on thermochemical considerations, the O(1S) formation from O3 photolysis at 215 and 220 nm is attributed to a spin-forbidden process of O(1S)+O2(X3Σg ). Analysis of the Doppler profile of O(1S) produced from O3 photolysis at 193 nm also indicates that the O(1S) atoms are produced from the spin-forbidden process. In the photolysis of N2O and H2O2 at 193 nm, no discernible signal of O(1S) atoms has been detected. The upper limit values of the quantum yields for O(1S) production from N2O and H2O2 photolysis at 193 nm are estimated to be 8 × 10−5 and 3 × 10−5, respectively. Using the experimental results, the impact of the O(1S) formation from O3 photolysis on the atmospheric OH radical formation through the reaction of O(1S)+H2O has been estimated. The calculated results show that the contribution of the O(1S)+H2O reaction to the OH production rate is ∼2% of that of the O(1D)+H2O reaction at 30 km altitude in mid-latitude. Implications of the present laboratory experimental results for the terrestrial airglow of O(1S) at 557.7 nm have also been discussed.  相似文献   
67.
Four phyllosilicate-rich micrometeorites (MMs) were investigated by a synchrotron radiation X-ray diffraction technique and transmission electron microscopy. Three are saponite-rich MMs and one is a serpentine-rich one. In the saponite-rich MMs, we could not find serpentine, and vice versa in the serpentine-rich MM. In the saponite-rich MMs, major constituent minerals are saponite, Fe- and Ni-bearing sulfides, and magnetite. Two saponite-rich MMs contain fine-grained magnesiowüstite-rich aggregates. The aggregates consist of <50 nm polygonal magnesiowüstite coexisting with minor Fe sulfide grains. Their texture, chemical composition, and the result of heating experiments on matrix fragments of the Tagish Lake carbonaceous chondrite strongly suggest that these aggregates were formed by the breakdown of Mg- and Fe-rich carbonate grains when the MMs entered the Earth’s atmosphere. The estimated major mineral assemblage of the saponite-rich MMs before entering the Earth’s atmosphere is very similar to that of the Tagish Lake carbonate-rich lithology, and we suggest that the MMs and the meteorite were derived from similar asteroids. The major mineral assemblage and texture of the matrix of serpentine-rich MM are similar to the matrix of the Sayama CM2 chondrite that experienced heavy aqueous alteration. Chemical compositions of serpentine in the MM suggest that the degree of aqueous alteration of the MM is weaker than that of Sayama. In the MM, cronstedtite does not coexist with tochilinite, which is different from CM2 chondrites that experienced weak to moderate aqueous alteration. However, the possibility that the serpentine-rich MM was derived from the CM chondrite asteroid cannot be ruled out, because tochilinite can be preferentially decomposed during atmospheric entry heating due to its lower decomposition temperature than that of cronstedtite.  相似文献   
68.
Isotopic and elemental compositions of rare gases in various types of gas samples collected in the Japanese Islands were investigated. Excess3He was found in most samples. Many samples showed a regionally uniform high3He/4He ratio of about 7 times the atmospheric ratio. The He concentrations varied from 0.6 to 1800 ppm, and they were low in CO2-rich gases and high in N2-rich gases. Ne isotopic deviations from the atmospheric Ne were detected in most volcanic gases. The deviations and the elemental abundance patterns in volcanic gases can be explained by a mixing between two components, one is mass fractionated rare gases and the other is isotopically atmospheric and is enriched in heavy rare gas elements. Ar was a mixture of mass fractionated Ar, atmospheric Ar and radiogenic Ar, and the contribution of radiogenic40Ar was small in all samples. Except for He, elemental abundance patterns were progressively enriched in the heavier rare gases relative to the atmosphere. Several samples were highly enriched in Kr and Xe relative to the abundance pattern of dissolution equilibrium of atmospheric rare gases in water. The component which is highly enriched in heavy rare gases may be released from sedimentary materials in the crust.  相似文献   
69.
Impacts of the South China Sea Throughflow (SCST) on seasonal and interannual variations of the Indonesian Throughflow are studied by comparing outputs from ocean general circulation model (OGCM) experiments with and without the SCST. The observed subsurface maximum in the southward flow through the Makassar Strait is simulated only when the SCST, which is driven by the large-scale wind, is allowed in the model. The mean volume and heat transport by the Makassar Strait Throughflow are reduced by 1.7 Sv and 0.19 PW, respectively, by the existence of the SCST in the model. The difference is particularly remarkable during boreal winter when the SCST reaches its seasonal maximum. Furthermore, the SCST is strengthened during El Niño, leading to the weakening in the southward volume and heat transport through the Makassar Strait by 0.37 Sv and 0.05 PW, respectively. These findings from the OGCM experiments suggest that the SCST may play an important role in climate variability of the Indo-Pacific Ocean.  相似文献   
70.
Using reanalysis data and snow cover data derived from satellite observations, respective influences of Indian Ocean Dipole (IOD) and El Niño/Southern Oscillation (ENSO) on the Tibetan snow cover in early winter are investigated. It is found that the snow cover shows a significant positive partial correlation with IOD. In the pure positive IOD years with no co-occurrences of El Niño, negative geopotential height anomalies north of India are associated with warm and humid southwesterlies to enter the plateau from the Bay of Bengal after rounding cyclonically and supply more moisture. This leads to more precipitation, more snow cover, and resultant lower surface temperature over the plateau. These negative geopotential height anomalies north of India are related to the equivalent barotropic stationary Rossby waves in the South Asian wave guide. The waves can be generated by the IOD-related convection anomalies over the western/central Indian Ocean. In contrast, in the pure El Niño years with no co-occurrences of the positive IOD, the anomalies of moisture supply and surface temperature over the plateau are insignificant, suggesting negligible influences of ENSO on the early winter Tibetan snow cover. Further analyses show that ENSO is irrelevant to the spring/early summer Tibetan snow cover either, whereas the IOD-induced snow cover anomalies can persist long from the early winter to the subsequent early summer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号