全文获取类型
收费全文 | 112篇 |
免费 | 0篇 |
国内免费 | 1篇 |
专业分类
测绘学 | 4篇 |
大气科学 | 25篇 |
地球物理 | 25篇 |
地质学 | 16篇 |
海洋学 | 5篇 |
天文学 | 36篇 |
自然地理 | 2篇 |
出版年
2023年 | 2篇 |
2021年 | 6篇 |
2020年 | 5篇 |
2019年 | 6篇 |
2018年 | 1篇 |
2017年 | 1篇 |
2016年 | 5篇 |
2015年 | 2篇 |
2014年 | 16篇 |
2013年 | 4篇 |
2012年 | 6篇 |
2011年 | 1篇 |
2010年 | 9篇 |
2009年 | 5篇 |
2008年 | 7篇 |
2007年 | 3篇 |
2006年 | 8篇 |
2005年 | 6篇 |
2003年 | 5篇 |
2002年 | 2篇 |
2001年 | 1篇 |
2000年 | 1篇 |
1999年 | 1篇 |
1997年 | 1篇 |
1995年 | 1篇 |
1992年 | 1篇 |
1989年 | 1篇 |
1987年 | 1篇 |
1983年 | 2篇 |
1981年 | 1篇 |
1979年 | 1篇 |
1977年 | 1篇 |
排序方式: 共有113条查询结果,搜索用时 0 毫秒
111.
The Sanbagawa belt is one of the famous subduction‐related high‐pressure (HP) metamorphic belts in the world. However, spatial distributions of eclogite units in the belt have not yet satisfactorily established, except within the Besshi region, central Shikoku, southwest Japan because most eclogitic rocks were affected by lower pressure overprinting during exhumation. In order to better determine the areal distribution of the eclogite units and their metamorphic features, inclusion petrography of garnet porphyroblasts using a combination of electron probe microanalyser and Raman spectroscopy was applied to pelitic and mafic schists from the Asemi‐gawa region, central Shikoku. All pelitic schist samples are highly retrogressed, and include no index HP minerals such as jadeite, omphacite, paragonite, or glaucophane in the matrix. Garnet porphyroblasts in pelitic schists occur as subhedral or anhedral crystals, and show compositional zoning with irregular‐shaped inner segments and overgrown outer segments, the boundary of which is marked by discontinuous changes in spessartine. This feature suggests that a resorption process of the inner segment occurred prior to the formation of the outer segment, indicating discontinuous crystallization between the two segments. The inner segment of some composite‐zoned garnet grains displays Mn oscillations, implying infiltration of metamorphic fluid during the initial exhumation stage. Evidence for an early eclogite facies event was determined from mineral inclusions (e.g., jadeite, paragonite, glaucophane) in the garnet inner segments. Mafic schists include no index HP minerals in the matrix as with pelitic schists. Garnet grains in mafic schists show simple normal zoning, recording no discontinuous growth during crystal formation. There are no index HP mineral inclusions in the garnet, and thus no evidence suggesting eclogite facies conditions. Quartz inclusions in garnet of the pelitic and mafic schists show residual pressure values (?ω1) of >8.5 cm?1 and <8.5 cm?1 respectively. The combination of Raman geobarometry and conventional thermodynamic calculations gives peak P–T conditions of 1.6–2.1 GPa at 460–520°C for the pelitic schists. The ?ω1 values of quartz inclusions in mafic schists are converted to a metamorphic pressure of 1.2–1.4 GPa at 466–549°C based on Raman geothermometry results. These results indicate that a pressure gap definitely exists between the mafic schists and the almost adjacent pelitic schists, which have experienced a different metamorphic history. Furthermore, the peak P–T values of the Asemi‐gawa eclogite unit are compatible with those of Sanbagawa eclogite unit in the Besshi region of central Shikoku, suggesting that these eclogite units share a similar P–T trajectory. The Asemi‐gawa eclogite unit exists in a limited area and is composed of mostly pelitic schists. We infer that these abundant pelitic schists played a key role in buoyancy‐driven exhumation by reducing bulk rock density and strength. 相似文献
112.
Takaaki Noguchi Makoto Kimura Takahito Hashimoto Mitsuru Konno Tomoki Nakamura Michael E. Zolensky Ryuji Okazaki Masahiko Tanaka Akira Tsuchiyama Aiko Nakato Toshinori Ogami Hatsumi Ishida Ryosuke Sagae Shinichi Tsujimoto Toru Matsumoto Junya Matsuno Akio Fujimura Masanao Abe Toru Yada Toshifumi Mukai Munetaka Ueno Tatsuaki Okada Kei Shirai Yukihiro Ishibashi 《Meteoritics & planetary science》2014,49(2):188-214
On the basis of observations using Cs‐corrected STEM, we identified three types of surface modification probably formed by space weathering on the surfaces of Itokawa particles. They are (1) redeposition rims (2–3 nm), (2) composite rims (30–60 nm), and (3) composite vesicular rims (60–80 nm). These rims are characterized by a combination of three zones. Zone I occupies the outermost part of the surface modification, which contains elements that are not included in the unchanged substrate minerals, suggesting that this zone is composed of sputter deposits and/or impact vapor deposits originating from the surrounding minerals. Redeposition rims are composed only of Zone I and directly attaches to the unchanged minerals (Zone III). Zone I of composite and composite vesicular rims often contains nanophase (Fe,Mg)S. The composite rims and the composite vesicular rims have a two‐layered structure: a combination of Zone I and Zone II, below which Zone III exists. Zone II is the partially amorphized zone. Zone II of ferromagnesian silicates contains abundant nanophase Fe. Radiation‐induced segregation and in situ reduction are the most plausible mechanisms to form nanophase Fe in Zone II. Their lattice fringes indicate that they contain metallic iron, which probably causes the reddening of the reflectance spectra of Itokawa. Zone II of the composite vesicular rims contains vesicles. The vesicles in Zone II were probably formed by segregation of solar wind He implanted in this zone. The textures strongly suggest that solar wind irradiation damage and implantation are the major causes of surface modification and space weathering on Itokawa. 相似文献
113.
Using a non-linear statistical analysis called “self-organizing maps”, the interannual sea surface temperature (SST) variations
in the southern Indian Ocean are investigated. The SST anomalies during austral summer from 1951 to 2006 are classified into
nine types with differences in the position of positive and negative SST anomaly poles. To investigate the evolution of these
SST anomaly poles, heat budget analysis of mixed-layer using outputs from an ocean general circulation model is conducted.
The warming of the mixed-layer by the climatological shortwave radiation is enhanced (suppressed) as a result of negative
(positive) mixed-layer thickness anomaly over the positive (negative) SST anomaly pole. This contribution from shortwave radiation
is most dominant in the growth of SST anomalies. In contrast to the results reported so far, the contribution from latent
heat flux anomaly is not so important. The discrepancy in the analysis is explained by the modulation in the contribution
from the climatological heat flux by the interannual mixed-layer depth anomaly that was neglected in the past studies. 相似文献