首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   1篇
  国内免费   3篇
测绘学   2篇
大气科学   3篇
地球物理   18篇
地质学   22篇
海洋学   4篇
天文学   19篇
综合类   3篇
自然地理   3篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2018年   5篇
  2017年   1篇
  2016年   2篇
  2014年   3篇
  2013年   6篇
  2012年   1篇
  2010年   2篇
  2009年   4篇
  2008年   6篇
  2007年   4篇
  2006年   6篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  1989年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1964年   1篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
51.
Luminous and Ultraluminous infrared galaxies (ULIRGs) contain the most intense regions of star formation in the local universe. Because molecular gas is the fuel for current and future star formation, the physical properties and distribution of the warm, dense molecular gas are key components for understanding the processes and timescales controlling star formation in these merger and merger remnant galaxies. We present new results from a legacy project on the Submillimeter Array which is producing high resolution images of a representative sample of galaxies with log L FIR >11.4 and D<200 Mpc.  相似文献   
52.
The Solar Optical Telescope (SOT) aboard the Hinode satellite (formerly called Solar-B) consists of the Optical Telescope Assembly (OTA) and the Focal Plane Package (FPP). The OTA is a 50-cm diffraction-limited Gregorian telescope, and the FPP includes the narrowband filtergraph (NFI) and the broadband filtergraph (BFI), plus the Stokes Spectro-Polarimeter (SP). The SOT provides unprecedented high-resolution photometric and vector magnetic images of the photosphere and chromosphere with a very stable point spread function and is equipped with an image-stabilization system with performance better than 0.01 arcsec rms. Together with the other two instruments on Hinode (the X-Ray Telescope (XRT) and the EUV Imaging Spectrometer (EIS)), the SOT is poised to address many fundamental questions about solar magnetohydrodynamics. This paper provides an overview; the details of the instrument are presented in a series of companion papers. M. Otsubo is a former NAOJ staff scientist.  相似文献   
53.
The Solar Optical Telescope (SOT) aboard the Solar-B satellite (Hinode) is designed to perform high-precision photometric and polarimetric observations of the Sun in visible light spectra (388 – 668 nm) with a spatial resolution of 0.2 – 0.3 arcsec. The SOT consists of two optically separable components: the Optical Telescope Assembly (OTA), consisting of a 50-cm aperture Gregorian with a collimating lens unit and an active tip-tilt mirror, and an accompanying Focal Plane Package (FPP), housing two filtergraphs and a spectro-polarimeter. The optomechanical and optothermal performance of the OTA is crucial to attain unprecedented high-quality solar observations. We describe in detail the instrument design and expected stable diffraction-limited on-orbit performance of the OTA, the largest state-of-the-art solar telescope yet flown in space.  相似文献   
54.
The Naein ophiolite is the most complete ophiolitic exposure in Cental Iran and considered as a remnant of the Mesozoic Central East Iranian microcontinent (CEIM) confining oceanic crust. In the northeastern part of this ophiolite (Darreh Deh area) within the mantle peridotites, a few hundred meters below the top of the Moho transition zone (MTZ), the hornblendites are present as dykes (former cracks and joints) from a few millimeters to nearly 50 cm wide. They have sharp boundaries with the surrounding mantle harzburgites and dunites. These hornblendites are pale green and coarse-grained in hand specimen and composed of magnesio-hornblende (Mg# = 0.93), chlorite (penninite and clinochlore, Mg# = 0.95), Cr-spinel (chromite, Cr# = 0.67 and Mg# = 0.55), tremolite, calcite and dolomite. Tremolites were formed by retrograde metamorphism of hornblendes. Calcite and dolomite occur as late-stage veins. Very high amount of primary hydrous phases (~94 vol % hornblende and chlorite), as well as peculiar mineralogical and chemical characteristics of the Naein ophiolite mantle hornblendites, do not match a magmatic origin. They are possibly products of the reaction between mantle peridotites and seawater-originated supercritical fluids, rich in silicate components. The presence of primary hydrous phases (hornblende and chlorite) may reveal high activity of H2O in the involved solution. The chemical composition of chromite in the hornblendites is near to the average chromite composition from the surrounding harzburgite and dunite. This suggests that the main source of Cr should be chromites of nearby peridotites, which were totally or partly dissolved by hydrothermal fluids. The positive anomaly of Eu in the chondrite-normalized REE patterns of hornblendes, high modal abundance of Ca-rich hornblende, as well as presence of calcite and dolomite, point to seawater ingression through the gabbros in to the uppermost mantle peridotites. The higher value of MgO than CaO, presence of high-Cr chromite and Cr-enrichment of hornblendes and chlorites indicate a higher contribution of peridotites rather than gabbros to the chemical characteristics of the involved fluids. This study shows that circulation of possibly seawater-derived high temperature hydrous fluids in the upper mantle can leach and provide necessary elements to form hornblendite in joints and cracks of the uppermost mantle.  相似文献   
55.
Greenish veins occurring in brecciated bentonite were found in the Kawasaki bentonite deposit of the Zao region in Miyagi Prefecture, Japan. Their occurrence possibly indicates the interaction of bentonite with Fe-rich hydrothermal solutions. In order to prove the hypothesis and understand the long-term mineralogical and petrographic evolution of bentonite during such interactions, the greenish veins and the surrounding altered bentonite were analyzed using X-ray fluorescence (XRF), scanning electron microscopy (SEM), X-ray diffraction (XRD), electron probe micro-analysis (EPMA), scanning transmission electron microscopy with energy dispersed spectroscopy (STEM-EDS) and micro X-ray absorption near-edge structure (XANES). The greenish veins resulting from hydrothermal solution are composed of mixed-layer minerals consisting of smectite and glauconite (glaucony), pyrite and opal. The occurrences indicate that glaucony and pyrite formed almost simultaneously from hydrothermal solution prior to opal precipitation. The mineral assemblages of the greenish veins and their surroundings indicate that the hydrothermal activity had most likely taken place at a temperature of less than 100 °C and that the pH and Eh conditions of the reacted solution were neutral to alkaline pH and reducing. The unaltered bentonite is composed mainly of Al smectite and opal. These minerals coexist as a mixture within the resolution level of the microprobe analyses. On the other hand, the bentonite in contact with the greenish veins consists of discrete opal grains and dioctahedral Al smectite containing Fe and was altered mineralogically and petrographically by the hydrothermal activity. Both the clay minerals and the opal were formed by dissolution and subsequent precipitation from the interaction of the original bentonite with the hydrothermal solution.  相似文献   
56.
Abstract The Isabela ophiolite, the Philippines, is characterized by a lherzolite‐dominant mantle section, which was probably formed beneath a slow‐spreading mid‐ocean ridge. Several podiform chromitites occur in the mantle section and grade into harzburgite to lherzolite. The chromitites show massive, nodular, layered and disseminated textures. Clinopyroxene (±orthopyroxene/amphibole) inclusions within chromian spinel (chromite hereafter) are commonly found in the massive‐type chromitites. Large chromitites are found in relatively depleted harzburgite hosts having high‐Cr? (Cr/(Cr + Al) atomic ratio = ~0.5) chromite. Light rare earth element (LREE) contents of clinopyroxenes in harzburgites near the chromitites are higher than those in lherzolite with low‐Cr? chromite, whereas heavy REE (HREE) contents of clinopyroxenes are lower in harzburgite than in lherzolite. The harzburgite near the chromitites is not a residual peridotite after simple melt extraction from lherzolite but is formed by open‐system melting (partial melting associated with influx of primitive basaltic melt of deeper origin). Clinopyroxene inclusions within chromite in chromitites exhibit convex‐shaped REE patterns with low HREE and high LREE (+Sr) abundances compared to the host peridotites. The chromitites were formed from a hybridized melt enriched with Cr, Si and incompatible elements (Na, LREE, Sr and H2O). The melt was produced by mixing of secondary melts after melt–rock interaction and the primitive basaltic melts in large melt conduits, probably coupled with a zone‐refining effect. The Cr? of chromites in the chromitites ranges from 0.65 to 0.75 and is similar to those of arc‐related magmas. The upper mantle section of the Isabela ophiolite was initially formed beneath a slow‐spreading mid‐ocean ridge, later introduced by arc‐related magmatisms in response to a switch in tectonic setting during its obduction at a convergent margin.  相似文献   
57.
58.
A corundum-bearing mafic rock in the Horoman Peridotite Complex, Japan, was derived from upper mantle conditions to lower crustal conditions with surrounding peridotites. The amphiboles found in the rock are classified into 3 types: (1) as interstitial and/or poikilitic grains (Green amphibole), (2) as a constituent mineral of symplectitic mineral aggregates with aluminous spinel at grain boundary between olivine and plagioclase (Symplectite amphibole) and (3) as film-shaped thin grains, usually less than 10 μm in width, at grain boundary between olivine and clinopyroxene (Film-shaped amphibole). The Film-shaped amphibole is rarely associated with orthopyroxene extremely low in Al2O3, Cr2O3 and CaO (Low-Al OPX). These minerals were formed by infiltration of SiO2- and volatile-rich fluids along grain boundaries after the rock was recrystallized at olivine-plagioclase stability conditions, i.e. the late stage of the exhumation of the Horoman Complex.

Chondrite-normalized rare earth element patterns and primitive mantle-normalized trace-element patterns of the Green amphibole and clinopyroxene are characterized by LREE-depleted patterns with Eu positive and negative anomalies of Zr and Hf. These geochemical characteristics of the constituent minerals were inherited from original whole-rock compositions through a reaction involving both pre-existing clinopyroxene and plagioclase. We propose that the fluids were originally rich in a SiO2 component but depleted in trace-elements. Dehydration of the surrounding metamorphic rocks in the Hidaka metamorphic belt, probably related to intrusion of hot peridotite body into the Hidaka crust, is a plausible origin for the fluids.  相似文献   

59.
60.
The Hidaka Collision Zone (HCZ), central Hokkaido, Japan, is a good target for studies of crustal evolution and deformation processes associated with an arc–arc collision. The collision of the Kuril Arc (KA) with the Northeast Japan Arc (NJA), which started in the middle Miocene, is considered to be a controlling factor for the formation of the Hidaka Mountains, the westward obduction of middle/lower crustal rocks of the KA (the Hidaka Metamorphic Belt (HMB)) and the development of the foreland fold-and-thrust belt on the NJA side. The “Hokkaido Transect” project undertaken from 1998 to 2000 was a multidisciplinary effort intended to reveal structural heterogeneity across this collision zone by integrated geophysical/geological research including seismic refraction/reflection surveys and earthquake observations. An E–W trending 227 km-long refraction/wide-angle reflection profile found a complicated structural variation from the KA to the NJA across the HCZ. In the east of the HCZ, the hinterland region is covered with 4–4.5 km thick highly undulated Neogene sedimentary layers, beneath which two eastward dipping reflectors were imaged in a depth range of 10–25 km, probably representing the layer boundaries of the obducting middle/lower crust of the KA. The HMB crops out on the westward extension of these reflectors with relatively high Vp (>6.0 km/s) and Vp/Vs (>1.80) consistent with middle/lower crustal rocks. Beneath these reflectors, more flat and westward dipping reflector sequences are situated at the 25–27 km depth, forming a wedge-like geometry. This distribution pattern indicates that the KA crust has been delaminated into more than two segments under our profile. In the western part of the transect, the structure of the fold-and-thrust belt is characterized by a very thick (5–8 km) sedimentary package with a velocity of 2.5–4.8 km/s. This package exhibits one or two velocity reversals in Paleogene sedimentary layers, probably formed by imbrication associated with the collision process. From the horizontal distribution of these velocity reversals and other geophysical/geological data, the rate of crustal shortening in this area is estimated to be greater than 3–4 mm/year, which corresponds to 40–50% of the total convergence rate between the NJA and the Eurasian Plate. This means that the fold-and-thrust belt west of the HCZ is absorbing a large amount of crustal deformation associated with plate interaction across Hokkaido Island.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号