首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9917篇
  免费   518篇
  国内免费   59篇
测绘学   289篇
大气科学   883篇
地球物理   2555篇
地质学   3783篇
海洋学   680篇
天文学   1749篇
综合类   42篇
自然地理   513篇
  2023年   44篇
  2022年   67篇
  2021年   191篇
  2020年   197篇
  2019年   176篇
  2018年   414篇
  2017年   434篇
  2016年   573篇
  2015年   422篇
  2014年   500篇
  2013年   706篇
  2012年   556篇
  2011年   593篇
  2010年   501篇
  2009年   610篇
  2008年   468篇
  2007年   353篇
  2006年   365篇
  2005年   297篇
  2004年   308篇
  2003年   252篇
  2002年   229篇
  2001年   184篇
  2000年   171篇
  1999年   144篇
  1998年   140篇
  1997年   154篇
  1996年   97篇
  1995年   93篇
  1994年   92篇
  1993年   63篇
  1992年   56篇
  1991年   56篇
  1990年   80篇
  1989年   38篇
  1988年   42篇
  1987年   55篇
  1986年   39篇
  1985年   52篇
  1984年   52篇
  1983年   63篇
  1982年   48篇
  1981年   49篇
  1980年   32篇
  1979年   38篇
  1978年   30篇
  1977年   32篇
  1975年   29篇
  1974年   27篇
  1973年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Large rivers have been previously shown to be vertically heterogeneous in terms of suspended particulate matter (SPM) concentration, as a result of sorting of suspended solids. Therefore, the spatial distribution of suspended sediments within the river section has to be known to assess the riverine sedimentary flux. Numerous studies have focused on the vertical distribution of SPM in a river channel from a theoretical or experimental perspective, but only a few were conducted so far on very large rivers. Moreover, a technique for the prediction of depth‐integrated suspended sediment fluxes in very large rivers based on sediment transport dynamics has not yet been proposed. We sampled river water along depth following several vertical profiles, at four locations on the Amazon River and its main tributaries and at two distinct water stages. Depending on the vertical profile, a one‐ to fivefold increase in SPM concentration is observed from river channel surface to bottom, which has a significant impact on the ‘depth‐averaged’ SPM concentration. For each cross section, a so‐called Rouse profile quantitatively accounts for the trend of SPM concentration increase with depth, and a representative Rouse number can be measured for each cross section. However, the prediction of this Rouse number would require the knowledge of the settling velocity of particles, which is dependent on the state of aggregation affecting particles within the river. We demonstrate that in the Amazon River, particle aggregation significantly influences the Rouse number and renders its determination impossible from grain‐size distribution data obtained in the lab. However, in each cross section, the Rouse profile obtained from the fit of the data can serve as a basis to model, at first order, the SPM concentration at any position in the river cross section. This approach, combined with acoustic Doppler current profiler (ADCP) water velocity transects, allows us to accurately estimate the depth‐integrated instantaneous sediment flux. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
982.
The Chihuahua City region, located in the semiarid-arid northern highlands of Mexico, has experienced intensive groundwater abstraction during the last 40 years to meet water demands in the region. A geochemical survey was carried out to investigate the evolution from baseline to modern conditions of a 130-km flow path including the El Sauz–Chihuahua–Aldama–San Diego de Alcalá regions. The research approach included the use of major chemical elements, chlorofluorocarbons and environmental isotope (18O, 2H, 13C and 14C) tracers. Stable isotopes indicate that groundwater evolves from the evaporation of local rainfall and surface water. Groundwater located at the lower end of the flow section is up to 6000 years old and older groundwater in the order of 9000 years BP was found in a deep well located in the upper part of the flow system, implying contribution from a neighbour basin. The background groundwater chemistry upstream of Chihuahua City results from feldspar weathering. Beyond Chihuahua City the chemical conditions are strongly modified owing to disposal of sewage from public and industrial water supplies into the Rio Chuviscar, subsequent allocation of this water to agricultural irrigation areas and direct infiltration under the river bed. As a consequence, anions like chloride and sulphate are mainly related to surface sources. Nitrate is controlled in part by sewage from public supply and industry and in part by agricultural practices. Arsenic and fluoride are related to weathering of rock formations of local mineralized ranges and subsequent enrichment of the basin-fill by magmatic processes. The results of this study have implications for groundwater management in an arid region that depends entirely on groundwater for domestic, industrial and agricultural water consumption. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
983.
The present study makes use of a detailed water balance to investigate the hydrological status of a peatland with a basal clay‐rich layer overlying an aquifer exploited for drinking water. The aim is to determine the influence of climate and groundwater extraction on the water balance and water levels in the peatland. During the two‐year period of monitoring, the hydrological functioning of the wetland showed a hydric deficit, associated with a permanent unsaturated layer and a deep water table. At the same time, a stream was observed serving as a recharge inflow instead of draining the peatland, as usually described in natural systems. Such conditions are not favourable for peat accumulation. Field investigations show that the clay layer has a high hydraulic conductivity (from 1·10?7 to 3·10?9 m.s?1) and does not form a hydraulic barrier. Moreover, the vertical hydraulic gradients are downward between the peat and the sand aquifer, leading to high flows of groundwater through the clay layer (20–48% of the precipitation). The observed hydric deficit of the peatland results from a combination of dry climatic conditions during the study period and groundwater extraction. The climatic effect is mainly expressed through drying out of the peatland, while the anthropogenic effect leads to an enhancement of the climatic effect on a global scale, and a modification of fluxes at a local scale. The drying out of the peatland can lead to its mineralisation, which thus gives rise to environmental impacts. The protection of such wetlands in the context of climate change should take account of anthropogenic pressures by considering the wetland‐aquifer interaction. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
984.
Tephra stratigraphical and tephrochronological studies of marine core MD99‐2275 on the North Icelandic shelf have revealed 58 new tephra horizons within the last 7050 cal. a BP, bringing the total number of identified tephra layers to 76. So far, over 100 tephra layers have been identified in the entire core spanning the last 15 000 years. The majority of the newly identified tephra layers are basaltic in composition and originate from the most active volcanic systems in Iceland, namely Grímsvötn, Veidivötn‐Bárdarbunga and Katla. A total of 40 tephra layer land–sea correlations have been made within this time period, of which 16 represent absolutely dated tephra markers. In addition, two tephra marker series are revealed in the marine sediments and in the terrestrial tephra stratigraphy, located between c. 2300–2600 and between 5700–5900 years. For the last 15 000 years, 21 tephra markers have been recognized. The marine tephra layer frequency (TLF) reveals two peaks, within the last 2000 years, and between 5000 and 7000 years ago. It shows the same general characteristics as the terrestrial TLF curve in Iceland, which indicates that marine sediments can yield important information about volcanism in Iceland. This is useful in time segments in which terrestrial records are poor or non‐existent. The study contributes to a high‐resolution tephrochronological framework on the North Icelandic shelf, with core MD99‐2275 representing a potential stratotype section in the area, and for the northern North Atlantic–Nordic Seas region, as well as being an important contribution to the Lateglacial–early Holocene volcanic history of Iceland.  相似文献   
985.
The Basin of Mexico is a closed basin of lacustrine character, with an average elevation of 2200 m above sea level. The watershed covers a vast extension in five states. Mexico City and its metropolitan area are located within this basin. The aquifer system is the main source of water supply for more than 20 million people. Water consumption is about 60 m3/s. The aquifer supplies about 43 m3/s from around 1000 wells at 70–200 m depth. Pumping policies have generated subsidence and degradation of the ground water quality in the Basin of Mexico The lacustrian clay layers play an important role in the local hydrogeology, protecting the aquifer from pollution, but the transition and piedmont areas are highly vulnerable to surface pollutants.  相似文献   
986.
River water temperature is a common target of water quality models at the watershed scale, owing to its principal role in shaping biogeochemical processes and in stream ecology. Usually, models include physically‐based, deterministic formulations to calculate water temperatures from detailed meteorological information, which usually comes from meteorological stations located far from the river reaches. However, alternative empirical approaches have been proposed, that usually depend on air temperature as master variable. This study explored the performance of a semidistributed water quality application modelling river water temperature in a Mediterranean watershed, using three different approaches. First, a deterministic approach was used accounting for the different heat exchange components usually considered in water temperature models. Second, an empirical approximation was applied using the equilibrium temperature concept, assuming a linear relationship with air temperature. And third, a hybrid approach was constructed, in which the temperature equilibrium concept and the deterministic approach were combined. Results showed that the hybrid approach gave the best results, followed by the empirical approximation. The deterministic formulation gave the worst results. The hybrid approach not only fitted daily river water temperatures, but also adequately modelled the daily temperature range (maximum–minimum daily temperature). Other river water features directly dependent on water temperature, such as river intrusion depth in lentic systems (i.e. the depth at which the river inflow plunges to equilibrate density differences with lake water), were also correctly modelled even at hourly time steps. However, results for the different heat fluxes between river and atmosphere were very unrealistic. Although direct evidence of discrepancies between meteorological drivers measured at the meteorological stations and the actual river microclimate was not found, the use of models including empirical or hybrid formulations depending mainly on air temperature is recommended if only meteorological data from locations far from the river reaches are available. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
987.
 During the 1944 eruption of Vesuvius a sudden change occurred in the dynamics of the eruptive events, linked to variations in magma composition. K-phonotephritic magmas were erupted during the effusive phase and the first lava fountain, whereas the emission of strongly porphyritic K-tephrites took place during the more intense fountain. Melt inclusion compositions (major and volatile elements) highlight that the magmas feeding the eruption underwent differentiation at different pressures. The K-tephritic volatile-rich melts (up to 3 wt.% H2O, 3000 ppm CO2, and 0.55 wt.% Cl) evolved to reach K-phonotephritic compositions by crystallization of diopside and forsteritic olivine at total fluid pressure higher than 300 MPa. These magmas fed a very shallow reservoir. The low-pressure differentiation of the volatile-poor K-phonotephritic magmas (H2O<1 wt.%) involved mixing, open-system degassing, and crystallization of leucite, salite, and plagioclase. The eruption was triggered by intrusion of a volatile-rich magma batch that rose from a depth of 11–22 km into the shallow magma chamber. The first phase of the eruption represents the partial emptying of the shallow reservoir, the top of which is within the volcanic edifice. The newly arrived magma mixed with that resident in the shallow reservoir and forced the transition from the effusive to the lava fountain phase of the eruption. Received: 14 September 1998 / Accepted: 10 January 1999  相似文献   
988.
Three techniques for obtaining soil water solutions (gravitational and matrical waters extracted using both in situ tension lysimeters and in vitro pressure chambers) and their later chemical analysis were performed in order to know the evolution of the soil‐solution composition when water moves down through the soil, from the Ah soil horizon to the BwC‐ or C‐horizons of forest soils located in western Spain. Additionally, ion concentrations and water volumes of input waters to soil (canopy washout) and exported waters (drainage solutions from C‐horizons) were determined to establish the net balance of solutes in order to determine the rates of leaching or retention of ions. A generalized process of sorption or retention of most components (even Cl?) was observed, from the soil surface to the C‐horizon, in both gravitational and matrical waters, with H4SiO4, Mn2+, Na+, and SO42? being the net exported components from the soil through the groundwater. These results enhance the role of the recycling effect in these forest soils. The net percentages of elements retained in these forest soils, considering the inputs and the outputs balance, were 68% K+, 85% Ca2+, 58% Mg2+, 7% Al3+, 5% Fe3+, 34% Zn2+, 57% Cl?, and 20% NO3?, and about 75% of dissolved organic carbon was mineralized. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
989.
The presence of decapod crustaceans in the Pliocene and Pleistocene (MIS 5e) fossil record of Santa Maria Island (Azores Archipelago) is herein reviewed. Our study raises the number of fossil decapods from this island from one species to 10 taxa (three for the Pliocene and seven for the Last Interglacial). Four of these 10 taxa are reported for the first time in the fossil record, worldwide. A new species of a mud shrimp is also described (Upogebia azorensis n. sp.). Our study suggests that the Plio–Pleistocene decapod assemblages of the Azores did not differ significantly from modern ones, being dominated by species that are today widespread across the Webbnesia ecoregion, the Mediterranean Sea, and the eastern Atlantic shores, including the Azores. As far as can be judged from the limited fossil record, apparently no tropical crab species with a Cabo Verdean/Senegalese provenance reached the Azores during windows of opportunity associated with Glacial Termination 2 or with the initial setting of the Last Interglacial period. This contribution increases the total number of marine taxa reported for the Pliocene and Pleistocene outcrops of Santa Maria Island to 218 and 155, respectively, highlighting the scientific relevance of its palaeontological heritage.  相似文献   
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号