首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   280篇
  免费   17篇
测绘学   32篇
大气科学   34篇
地球物理   94篇
地质学   69篇
海洋学   11篇
天文学   48篇
综合类   1篇
自然地理   8篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   7篇
  2020年   14篇
  2019年   9篇
  2018年   16篇
  2017年   16篇
  2016年   21篇
  2015年   15篇
  2014年   17篇
  2013年   36篇
  2012年   18篇
  2011年   21篇
  2010年   12篇
  2009年   16篇
  2008年   15篇
  2007年   10篇
  2006年   7篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   5篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1991年   2篇
  1990年   3篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
排序方式: 共有297条查询结果,搜索用时 15 毫秒
81.
Does civil society lobbying affect states’ policies on climate change? Does it facilitate or hamper cooperation towards ‘greener’ policies? Environmental non-governmental organizations (ENGOs) and business lobbying groups alike are increasingly seeking to access states’ negotiation delegations at the United Nations Framework Convention on Climate Change (UNFCCC) in order to affect or even change official delegates’ policies. Previous studies have failed to control for the fact that the set of states that have granted civil society access to their delegations is unlikely to be a random sample. Moreover, the fact that a delegation's policy outputs may converge with the preferences of a civil society group cannot be taken as evidence that it was caused by civil society lobbying. A matching approach that addresses both problems is proposed, which corrects for the non-random assignment of civil society organizations to state delegations and forms quasi-experimental contrasts by sampling a set of ‘most similar’ cases that only differ in their treatment; i.e. civil society lobbying. This approach facilitates a causal interpretation of lobbying efforts. The results indicate that only business groups are likely to exert a causal influence on states’ climate delegations. However, contrary to expectations, these groups appear to have enhanced states’ efforts towards environmentally friendly policies.

Policy relevance

What impact can non-governmental actors have in influencing states’ policies at the climate change negotiations? This question is addressed empirically using a matching approach, which corrects potential challenges in the research on interest group influence. It is shown that business groups are likely to influence states’ policies at the UNFCCC – unlike green interest groups or civil society in general. In light of these findings, three policy implications are derived that might be of importance for states and non-governmental decision makers alike. Most importantly, ENGOs should refocus their efforts for exerting their influence. ENGOs could make their lobbying more effective by first identifying the states that may be more receptive to their preferences and positions.  相似文献   
82.
A combined study of lithological, geochemical and physical sediment properties is reported from a completely laminated S5 sapropel, recovered in three gravity cores (M40-4 SL67, M51-3 SL103, M51-3 SL104) from the Pliny Trench region of the eastern Mediterranean. The thickness of the studied sapropel S5 varies between 85 and 91 cm and tops most S5-sapropels in the Mediterranean. Based on optical features like color and thickness of laminae, the sapropels were subdivided into thirteen distinct lithostratigraphic zones. These zones, as well as the finer layering pattern within them, could be followed exactly among the three cores, indicating that the processes responsible for this variation acted at least on a regional scale. The sapropel sediment is characterized by exceptionally high porosity, which is strongly correlated with Si/Ca. This relationship implies that the sapropel is in essence an organic-matter rich diatomite and its exceptional thickness can be explained by preservation of diatoms forming a loosely packed sediment fabric. Compared to other S5 sapropels, the preservation of diatoms has apparently led to a twofold increase in the thickness of the sapropel layer. Relative abundances of 10 elements were determined at ultra-high resolution (0.2 mm) by XRF-scanner over the complete length of each sapropel including several cm of enclosing marl. An analysis of the chemical data indicates that the lowermost 13 cm of the sapropel is chemically more similar to the underlying marl and that the sediment chemistry shows different signals at different scales. The strongest pattern is the contrast between the sapropel and the surrounding marl, which is accentuated in elements indicative for redox conditions as well as terrigenous sediment input and productivity. Within the sapropel, a mm- to cm-scale layering is observed. The abundances of many elements are systematically linked to the pattern of these layers, indicating a common origin, related to productivity and/or terrigenous sediment and/or redox conditions. This pattern indicates a link to a regional climatic process, making the S5 sapropel horizon in M40-4 SL67, M51-3 SL103 and M51-3 SL104 a potential high-resolution archive of climatic variability during the last interglacial in the Mediterranean Sea and its adjacent landmasses.  相似文献   
83.
The dark matter dominated Fornax dwarf spheroidal has five globular clusters orbiting at ∼1 kpc from its centre. In a cuspy cold dark matter halo the globulars would sink to the centre from their current positions within a few Gyr, presenting a puzzle as to why they survive undigested at the present epoch. We show that a solution to this timing problem is to adopt a cored dark matter halo. We use numerical simulations and analytic calculations to show that, under these conditions, the sinking time becomes many Hubble times; the globulars effectively stall at the dark matter core radius. We conclude that the Fornax dwarf spheroidal has a shallow inner density profile with a core radius constrained by the observed positions of its globular clusters. If the phase space density of the core is primordial then it implies a warm dark matter particle and gives an upper limit to its mass of ∼0.5 keV, consistent with that required to significantly alleviate the substructure problem.  相似文献   
84.
The concentrations of rare earth elements (REEs), sulphate, hydrogen sulphide, total alkalinity, calcium, magnesium and phosphate were measured in shallow (<12 cm below seafloor) pore waters from cold-seep sediments on the northern and southern summits of Hydrate Ridge, offshore Oregon. Downward-decreasing sulphate and coevally increasing sulphide concentrations reveal sulphate reduction as dominant early diagenetic process from ~2 cm depth downwards. A strong increase of total dissolved REE (∑REE) concentrations is evident immediately below the sediment–water interface, which can be related to early diagenetic release of REEs into pore water resulting from the re-mineralization of particulate organic matter. The highest pore water ∑REE concentrations were measured close to the sediment–water interface at ~2 cm depth. Distinct shale-normalized REE patterns point to particulate organic matter and iron oxides as main REE sources in the upper ~2-cm depth interval. In general, the pore waters have shale-normalized patterns reflecting heavy REE (HREE) enrichment, which suggests preferential complexation of HREEs with carbonate ions. Below ~2 cm depth, a downward decrease in ∑REE correlates with a decrease in pore water calcium concentrations. At this depth, the anaerobic oxidation of methane (AOM) coupled to sulphate reduction increases carbonate alkalinity through the production of bicarbonate, which results in the precipitation of carbonate minerals. It seems therefore likely that the REEs and calcium are consumed during vast AOM-induced precipitation of carbonate in shallow Hydrate Ridge sediments. The analysis of pore waters from Hydrate Ridge shed new light on early diagenetic processes at cold seeps, corroborating the great potential of REEs to identify geochemical processes and to constrain environmental conditions.  相似文献   
85.
This paper describes a boundary element code development on coupled thermal–mechanical processes of rock fracture propagation. The code development was based on the fracture mechanics code FRACOD that has previously been developed by Shen and Stephansson (Int J Eng Fracture Mech 47:177–189, 1993) and FRACOM (A fracture propagation code—FRACOD, User’s manual. FRACOM Ltd. 2002) and simulates complex fracture propagation in rocks governed by both tensile and shear mechanisms. For the coupled thermal-fracturing analysis, an indirect boundary element method, namely the fictitious heat source method, was implemented in FRACOD to simulate the temperature change and thermal stresses in rocks. This indirect method is particularly suitable for the thermal-fracturing coupling in FRACOD where the displacement discontinuity method is used for mechanical simulation. The coupled code was also extended to simulate multiple region problems in which rock mass, concrete linings and insulation layers with different thermal and mechanical properties were present. Both verification and application cases were presented where a point heat source in a 2D infinite medium and a pilot LNG underground cavern were solved and studied using the coupled code. Good agreement was observed between the simulation results, analytical solutions and in situ measurements which validates an applicability of the developed coupled code.  相似文献   
86.
Ground‐penetrating radar (GPR) has become a promising technique in the field of snow hydrological research. It is commonly used to measure snow depth, density, and water equivalent over large distances or along gridded snow courses. Having built and tested a mobile lightweight set‐up, we demonstrate that GPR is capable of accurately measuring snow ablation rates in complex alpine terrain. Our set‐up was optimized for efficient measurements and consisted of a multioffset radar with four pairs of antennas mounted to a plastic sled, which was small enough to permit safe and convenient operations. Repeated measurements at intervals of 2 to 7 days were taken during the 2014/2015 winter season along 10 profiles of 50 to 200 m length within two valleys located in the eastern Swiss Alps. Resulting GPR‐based data of snow depth, density, and water equivalent, as well as their respective change over time, were in good agreement with concurrent manual measurements, in particular if accurate alignment between repeated overpasses could be achieved. Corresponding root‐mean‐square error (RMSE) values amounted to 4.2 cm for snow depth, 17 mm for snow water equivalent, and 22 kg/m3 for snow density, with similar RMSE values for corresponding differential data. With this performance, the presented radar set‐up has the potential to provide exciting new and extensive datasets to validate snowmelt models or to complement lidar‐based snow surveys.  相似文献   
87.
In a series of time dependent numerical simulations we have performed a parameter study of magnetised relativistic jets. We have found that the impact of the magnetic field on the morphology of a jet depends strongly on the configuration of the field.  相似文献   
88.
Passive treatment systems are widely used for remediation of acid mine drainage (AMD), but existing designs are prone to clogging or loss of reactivity due to Al- and Fe-precipitates when treating water with high Al and heavy metal concentrations. Dispersed alkaline substrate (DAS) mixed from a fine-grained alkaline reagent (e.g. calcite sand) and a coarse inert matrix (e.g. wood chips) had shown high reactivity and good hydraulic properties in previous laboratory column tests. In the present study, DAS was tested at pilot field scale in the Iberian Pyrite Belt (SW Spain) on metal mine drainage with pH near 3.3, net acidity 1400–1650 mg/L as CaCO3, and mean concentrations of 317 mg/L Fe (95% Fe(II)), 311 mg/L Zn, 74 mg/L Al, 20 mg/L Mn, and 1.5–0.1 mg/L Cu, Co, Ni, Cd, As and Pb. The DAS-tank removed an average of 870 mg/L net acidity as CaCO3 (56% of inflow), 25% Fe, 93% Al, 5% Zn, 95% Cu, 99% As, 98% Pb, and 14% Cd, but no Mn, Ni or Co. Average gross drain pipe alkalinity was 181 mg/L as CaCO3, which increased total Fe removal to 153 mg/L (48%) in subsequent sedimentation ponds. Unfortunately, the tank suffered clogging problems due to the formation of a hardpan of Al-rich precipitates. DAS lifetime could probably be increased by lowering Al-loads.  相似文献   
89.
A comprehensive hydrological modeling study in the drainage area of a hydropower reservoir in central Switzerland is presented. Two models were tested to reproduce the measured discharge dynamics: (1) a detailed energy-balance model (ALPINE3D) primarily designed for snow simulations; (2) a conceptual runoff model system (PREVAH), including a distributed temperature-index snow and ice melt model. Considerable effort was put into distributing available meteorological station data to the model grids as forcing data. The recent EU regional climate modeling initiative ENSEMBLES provided up-to-date climate predictions for two 30-a periods in mid and late 21st century. These were used to estimate evolutions in the water supply of the hydropower reservoir in response to expected climate changes. The simulations suggest a shift of spring peak-flow by almost two months for the end of the century. Warmer winter temperatures will cause higher winter base-flow. Due to glacier retreat, late-summer flow will decrease at the end of the century.  相似文献   
90.
Geophysical tomography captures the spatial distribution of the underlying geophysical property at a relatively high resolution, but the tomographic images tend to be blurred representations of reality and generally fail to reproduce sharp interfaces. Such models may cause significant bias when taken as a basis for predictive flow and transport modeling and are unsuitable for uncertainty assessment. We present a methodology in which tomograms are used to condition multiple-point statistics (MPS) simulations. A large set of geologically reasonable facies realizations and their corresponding synthetically calculated cross-hole radar tomograms are used as a training image. The training image is scanned with a direct sampling algorithm for patterns in the conditioning tomogram, while accounting for the spatially varying resolution of the tomograms. In a post-processing step, only those conditional simulations that predicted the radar traveltimes within the expected data error levels are accepted. The methodology is demonstrated on a two-facies example featuring channels and an aquifer analog of alluvial sedimentary structures with five facies. For both cases, MPS simulations exhibit the sharp interfaces and the geological patterns found in the training image. Compared to unconditioned MPS simulations, the uncertainty in transport predictions is markedly decreased for simulations conditioned to tomograms. As an improvement to other approaches relying on classical smoothness-constrained geophysical tomography, the proposed method allows for: (1) reproduction of sharp interfaces, (2) incorporation of realistic geological constraints and (3) generation of multiple realizations that enables uncertainty assessment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号