首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   323篇
  免费   29篇
测绘学   32篇
大气科学   35篇
地球物理   106篇
地质学   97篇
海洋学   12篇
天文学   55篇
综合类   1篇
自然地理   14篇
  2023年   2篇
  2022年   1篇
  2021年   8篇
  2020年   15篇
  2019年   10篇
  2018年   18篇
  2017年   17篇
  2016年   27篇
  2015年   19篇
  2014年   19篇
  2013年   43篇
  2012年   20篇
  2011年   22篇
  2010年   13篇
  2009年   20篇
  2008年   16篇
  2007年   11篇
  2006年   8篇
  2005年   6篇
  2004年   5篇
  2003年   4篇
  2002年   1篇
  2001年   5篇
  2000年   6篇
  1999年   2篇
  1998年   6篇
  1997年   5篇
  1996年   2篇
  1994年   1篇
  1990年   2篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1968年   1篇
  1966年   1篇
  1921年   1篇
  1919年   1篇
排序方式: 共有352条查询结果,搜索用时 46 毫秒
51.
Karst areas and their catchments pose a great challenge for protection because fast conduit flow results in low natural attenuation of anthropogenic contaminants. Studies of the hydrochemistry of karst sources and river solutes are an important tool for securing and managing water resources. A study of the geochemical downriver evolution of the Wiesent River and its tributaries, located in a typical karst terrain, revealed unexpected downstream decreases of nitrate with maximum mean values of 30 mg/L at the source to minimum values of 18 mg/L near the river mouth. This trend persisted over the length of the river even though increased agricultural activities are evident in the downstream section of the catchment. This pattern is caused by fertilizer inputs via diffusive and fast conduits flow from karst lithology in the upstream area that may have reached the river's source even from beyond the hydrological catchment boundaries. Further downstream, these influences became diluted by tributary inputs that drain subcatchments dominated by claystone and sandstone lithologies that increased potassium and sulphate concentrations. Our findings indicate that bedrock geology remains the dominant control on the major ion chemistry of the Wiesent River and that agricultural influences are strongest near the headwaters despite increased land use further downstream, due to long‐term storage and accumulation in karst aquifers. This feature may not be unique to the Wiesent River system, as carbonates cover significant portions of the Earth's surface and subsequent work in other river systems could establish whether such patterns are ubiquitous worldwide.  相似文献   
52.
In this study, we assess the impact of two combination strategies, namely local ties (LT) and global ties (GT), on the datum realization of Global Terrestrial Reference Frames in view of the Global Geodetic Observing System requiring 1 mm-accuracy. Simulated Very Long Baseline Interferometry (VLBI) and Satellite Laser Ranging (SLR) data over a 7 year time span was used. The LT results show that the geodetic datum can be best transferred if the precision of the LT is at least 1 mm. Investigating different numbers of LT, the lack of co-located sites on the southern hemisphere is evidenced by differences of 9 mm in translation and rotation compared to the solution using all available LT. For the GT, the combination applying all Earth rotation parameters (ERP), such as pole coordinates and UT1-UTC, indicates that the rotation around the Z axis cannot be adequately transferred from VLBI to SLR within the combination. Applying exclusively the pole coordinates as GT, we show that the datum can be transferred with mm-accuracy within the combination. Furthermore, adding artificial stations in Tahiti and Nigeria to the current VLBI network results in an improvement in station positions by 13 and 12%, respectively, and in ERP by 17 and 11%, respectively. Extending to every day VLBI observations leads to 65% better ERP estimates compared to usual twice-weekly VLBI observations.  相似文献   
53.
Precise transformation between the celestial reference frames (CRF) and terrestrial reference frames (TRF) is needed for many purposes in Earth and space sciences. According to the Global Geodetic Observing System (GGOS) recommendations, the accuracy of positions and stability of reference frames should reach 1 mm and 0.1 mm year\(^{-1}\), and thus, the Earth Orientation Parameters (EOP) should be estimated with similar accuracy. Different realizations of TRFs, based on the combination of solutions from four different space geodetic techniques, and CRFs, based on a single technique only (VLBI, Very Long Baseline Interferometry), might cause a slow degradation of the consistency among EOP, CRFs, and TRFs (e.g., because of differences in geometry, orientation and scale) and a misalignment of the current conventional EOP series, IERS 08 C04. We empirically assess the consistency among the conventional reference frames and EOP by analyzing the record of VLBI sessions since 1990 with varied settings to reflect the impact of changing frames or other processing strategies on the EOP estimates. Our tests show that the EOP estimates are insensitive to CRF changes, but sensitive to TRF variations and unmodeled geophysical signals at the GGOS level. The differences between the conventional IERS 08 C04 and other EOP series computed with distinct TRF settings exhibit biases and even non-negligible trends in the cases where no differential rotations should appear, e.g., a drift of about 20 \(\upmu \)as year\(^{-1 }\)in \(y_{\mathrm{pol }}\) when the VLBI-only frame VTRF2008 is used. Likewise, different strategies on station position modeling originate scatters larger than 150 \(\upmu \)as in the terrestrial pole coordinates.  相似文献   
54.
The radio sources within the most recent celestial reference frame (CRF) catalog ICRF2 are represented by a single, time-invariant coordinate pair. The datum sources were chosen mainly according to certain statistical properties of their position time series. Yet, such statistics are not applicable unconditionally, and also ambiguous. However, ignoring systematics in the source positions of the datum sources inevitably leads to a degradation of the quality of the frame and, therefore, also of the derived quantities such as the Earth orientation parameters. One possible approach to overcome these deficiencies is to extend the parametrization of the source positions, similarly to what is done for the station positions. We decided to use the multivariate adaptive regression splines algorithm to parametrize the source coordinates. It allows a great deal of automation, by combining recursive partitioning and spline fitting in an optimal way. The algorithm finds the ideal knot positions for the splines and, thus, the best number of polynomial pieces to fit the data autonomously. With that we can correct the ICRF2 a priori coordinates for our analysis and eliminate the systematics in the position estimates. This allows us to introduce also special handling sources into the datum definition, leading to on average 30 % more sources in the datum. We find that not only the CPO can be improved by more than 10 % due to the improved geometry, but also the station positions, especially in the early years of VLBI, can benefit greatly.  相似文献   
55.
The perspective of European National Mapping Agencies (NMA) on the role of citizen sensing in map production was explored. The NMAs varied greatly in their engagement with the community generating volunteered geographic information (VGI) and in their future plans. From an assessment of NMA standard practices, it was evident that much VGI was acquired with a positional accuracy that, while less than that typically acquired by NMAs, actually exceeded the requirements of the nominal data capture scale used by most NMAs. Opportunities for VGI use in map revision and updating were evident, especially for agencies that use a continuous rather than cyclical updating policy. Some NMAs had also developed systems to engage with citizen sensors and examples are discussed. Only rarely was VGI used to collect data on features beyond the standard set used by the NMAs. The potential role of citizen sensing and so its current scale of use by NMAs is limited by a series of concerns, notably relating to issues of data quality, the nature and motivation of the contributors, legal issues, the sustainability of data source, and employment fears of NMA staff. Possible priorities for future research and development are identified to help ensure that the potential of VGI in mapping is realized.  相似文献   
56.
57.
The article presents the spatial and temporal dynamics of water temperature in two reservoirs on the upper course of the Dunajec River in the Polish Carpathians. It aims at presenting how spatial patterns and time evolution of water temperature in the reservoirs affect the water temperature in the river. The analysis is based on the results of water temperature measurements in hydrometric verticals in two reservoirs as well as in the river upstream and downstream of the reservoirs. The measurements were carried out in 2012 and 2013, in hydrometeorological conditions typical for each season of the year. Based on the measurements, it has been demonstrated that the complex of reservoirs affects the water temperature in the river over the year and the existence of the smaller lower reservoir may attenuate the cooling or heating effect of the main reservoir on the river.  相似文献   
58.
59.
Understanding groundwater–surface water (GW–SW) interactions is vital for water management in karstic catchments due to its impact on water quality. The objective of this study was to evaluate and compare the applicability of seven environmental tracers to quantify and localize groundwater exfiltration into a small, human-impacted karstic river system. Tracers were selected based on their emission source to the surface water either as (a) dissolved, predominantly geogenic compounds (radon-222, sulphate and electrical conductivity) or (b) anthropogenic compounds (predominantly) originating from wastewater treatment plant (WWTP) effluents (carbamazepine, tramadol, sodium, chloride). Two contrasting sampling approaches were compared (a) assuming steady-state flow conditions and (b) considering the travel time of the water parcels (Lagrangian sampling) through the catchment to account for diurnal changes in inflow from the WWTP. Spatial variability of the concentrations of all tracers indicated sections of preferential groundwater inflow. Lagrangian sampling techniques seem highly relevant for capturing dynamic concentration patterns of WWTP-derived compounds. Quantification of GW inflow with the finite element model FINIFLUX, based on observed in-stream Rn activities led to plausible fluxes along the investigated river reaches (0.265 m3 s−1), while observations of other natural or anthropogenic environmental tracers produced less plausible water fluxes. Important point sources of groundwater exfiltration can be ascribed to locations where the river crosses geological fault lines. This indicates that commonly applied concepts describing groundwater–surface water interactions assuming diffuse flow in porous media are difficult to transfer to karstic river systems whereas concepts from fractured aquifers may be more applicable. In general, this study helps selecting the best suited hydrological tracer for GW exfiltration and leads to a better understanding of processes controlling groundwater inflow into karstic river systems.  相似文献   
60.
Hyporheic exchange is the interaction of river water and groundwater, and is difficult to predict. One of the largest contributions to predictive uncertainty for hyporheic exchange has been attributed to the representation of heterogeneous subsurface properties. Our study evaluates the trade-offs between intrinsic (irreducible) and epistemic (reducible) model errors when choosing between homogeneous and highly complex subsurface parameter structures. We modeled the Steinlach River Test Site in Southwest Germany using a fully coupled surface water-groundwater model to simulate hyporheic exchange and to assess the predictive errors and uncertainties of transit time distributions. A highly parameterized model was built, treated as a “virtual reality” and used as a reference. We found that if the parameter structure is too simple, it will be limited by intrinsic model errors. By increasing subsurface complexity through the addition of zones or heterogeneity, we can begin to exchange intrinsic for epistemic errors. Thus, the appropriate level of detail to represent the subsurface depends on the acceptable range of intrinsic structural errors for the given modeling objectives and the available site data. We found that a zonated model is capable of reproducing the transit time distributions of a more detailed model, but only if the geological structures are known. An interpolated heterogeneous parameter field (cf. pilot points) showed the best trade-offs between the two errors, indicating fitness for practical applications. Parameter fields generated by multiple-point geostatistics (MPS) produce transit time distributions with the largest uncertainties, however, these are reducible by additional hydrogeological data, particularly flux measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号