首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1149篇
  免费   73篇
  国内免费   14篇
测绘学   46篇
大气科学   103篇
地球物理   246篇
地质学   417篇
海洋学   87篇
天文学   233篇
综合类   3篇
自然地理   101篇
  2023年   4篇
  2022年   3篇
  2021年   16篇
  2020年   22篇
  2019年   31篇
  2018年   46篇
  2017年   39篇
  2016年   45篇
  2015年   40篇
  2014年   32篇
  2013年   82篇
  2012年   57篇
  2011年   63篇
  2010年   49篇
  2009年   68篇
  2008年   64篇
  2007年   54篇
  2006年   60篇
  2005年   36篇
  2004年   47篇
  2003年   59篇
  2002年   31篇
  2001年   22篇
  2000年   27篇
  1999年   14篇
  1998年   12篇
  1997年   17篇
  1996年   15篇
  1995年   12篇
  1994年   12篇
  1993年   14篇
  1992年   10篇
  1991年   5篇
  1990年   11篇
  1989年   10篇
  1988年   8篇
  1987年   6篇
  1985年   8篇
  1984年   8篇
  1983年   11篇
  1982年   6篇
  1981年   6篇
  1980年   4篇
  1979年   11篇
  1978年   8篇
  1976年   6篇
  1975年   6篇
  1973年   4篇
  1972年   3篇
  1971年   5篇
排序方式: 共有1236条查询结果,搜索用时 15 毫秒
141.
Geothermal observations from a suite of boreholes in western Utah, USA, combined with meteorologic data at nearby weather stations are used to test the hypothesis that temperatures in the earths subsurface contain an accurate record of recent climate change. The change in air temperature over the last hundred years successfully predicts detailed subsurface temperature profiles to better than ±0.05°C, indicating that ground temperatures tract air temperatures over long periods and that climate change signals are conducted into, and recorded in, the solid earth by the process of heat conduction. We combine borehole temperature data with meteorologic data from the nearest weather station to determine the time averaged difference between surface ground temperature and surface air temperature for borehole-weather station pairs and to infer the long term mean air temperature prior to the observational record. For our western Utah sites the preobservational mean temperature is close to the average surface air temperature for this century suggesting that up to 0.5°C of warming deduced from the last 100 years of weather station data may be attributed to recovery from a cool period at the turn of the century.  相似文献   
142.
143.
144.
We observed Saturn at far-infrared and submillimeter wavelengths during the Earth's March 1980 passage through the plane of Saturn's rings. Comparison with earlier spectroscopic observations by D. B. Ward [Icarus32, 437–442 (1977)], obtained at a time when the tilt angle of the rings was 21.8°, permits separation of the disk and ring contributions to the flux observed in this wavelength range. We present two main results: (1) The observed emission of the disk between 60 and 180 μm corresponds to a brightness temperature of 104 ± 2°K; (2) the brightness temperature of the rings drops approximately 20°K between 60 and 80 μm. Our data, in conjunction with the data obtained by other observers between 1 μm and 1 mm, permit us to derive an improved estimate for the total Saturnian surface brightness of (4.84 ± 0.32) × 10?4W cm?2 corresponding to an effective temperature of 96.1 ± 1.6°K. The ratio of radiated to incident power, PR/PI, is (1.46 ± 0.08)/(1 - A), where A is the Bond albedo. For A = 0.337 ± 0.029, PR/PI = 2.20 ± 0.15 and Saturn's intrinsic luminosity is LS = (2.9 ± 0.5) × 10?10L.  相似文献   
145.
146.
147.
148.
Spline surfaces are interpolated for top of the Dundee Limestone of the central Michigan Basin, USA. The requirement of gridded data render spline functions inappropriate tools for representing many types of geological mapped data. Comparisons are drawn with maps for the same Michigan data based on trend surfaces and spatial filtering.  相似文献   
149.
Amoeboid olivine aggregates (AOAs) are the most common type of refractory inclusions in CM, CR, CH, CV, CO, and ungrouped carbonaceous chondrites Acfer 094 and Adelaide; only one AOA was found in the CBb chondrite Hammadah al Hamra 237 and none were observed in the CBa chondrites Bencubbin, Gujba, and Weatherford. In primitive (unaltered and unmetamorphosed) carbonaceous chondrites, AOAs consist of forsterite (Fa<2), Fe, Ni-metal (5-12 wt% Ni), and Ca, Al-rich inclusions (CAIs) composed of Al-diopside, spinel, anorthite, and very rare melilite. Melilite is typically replaced by a fine-grained mixture of spinel, Al-diopside, and ±anorthite; spinel is replaced by anorthite. About 10% of AOAs contain low-Ca pyroxene replacing forsterite. Forsterite and spinel are always 16O-rich (δ17,18O∼−40‰ to −50‰), whereas melilite, anorthite, and diopside could be either similarly 16O-rich or 16O-depleted to varying degrees; the latter is common in AOAs from altered and metamorphosed carbonaceous chondrites such as some CVs and COs. Low-Ca pyroxene is either 16O-rich (δ17,18O∼−40‰) or 16O-poor (δ17,18O∼0‰). Most AOAs in CV chondrites have unfractionated (∼2-10×CI) rare-earth element patterns. AOAs have similar textures, mineralogy and oxygen isotopic compositions to those of forsterite-rich accretionary rims surrounding different types of CAIs (compact and fluffy Type A, Type B, and fine-grained, spinel-rich) in CV and CR chondrites. AOAs in primitive carbonaceous chondrites show no evidence for alteration and thermal metamorphism. Secondary minerals in AOAs from CR, CM, and CO, and CV chondrites are similar to those in chondrules, CAIs, and matrices of their host meteorites and include phyllosilicates, magnetite, carbonates, nepheline, sodalite, grossular, wollastonite, hedenbergite, andradite, and ferrous olivine.Our observations and a thermodynamic analysis suggest that AOAs and forsterite-rich accretionary rims formed in 16O-rich gaseous reservoirs, probably in the CAI-forming region(s), as aggregates of solar nebular condensates originally composed of forsterite, Fe, Ni-metal, and CAIs. Some of the CAIs were melted prior to aggregation into AOAs and experienced formation of Wark-Lovering rims. Before and possibly after the aggregation, melilite and spinel in CAIs reacted with SiO and Mg of the solar nebula gas enriched in 16O to form Al-diopside and anorthite. Forsterite in some AOAs reacted with 16O-enriched SiO gas to form low-Ca pyroxene. Some other AOAs were either reheated in 16O-poor gaseous reservoirs or coated by 16O-depleted pyroxene-rich dust and melted to varying degrees, possibly during chondrule formation. The most extensively melted AOAs experienced oxygen isotope exchange with 16O-poor nebular gas and may have been transformed into magnesian (Type I) chondrules. Secondary mineralization and at least some of the oxygen isotope exchange in AOAs from altered and metamorphosed chondrites must have resulted from alteration in the presence of aqueous solutions after aggregation and lithification of the chondrite parent asteroids.  相似文献   
150.
This paper shows how local spatial nonparametric prediction models can be applied to estimate volumes of recoverable gas resources at individual undrilled sites, at multiple sites on a regional scale, and to compute confidence bounds for regional volumes based on the distribution of those estimates. An approach that combines cross-validation, the jackknife, and bootstrap procedures is used to accomplish this task. Simulation experiments show that cross-validation can be applied beneficially to select an appropriate prediction model. The cross-validation procedure worked well for a wide range of different states of nature and levels of information. Jackknife procedures are used to compute individual prediction estimation errors at undrilled locations. The jackknife replicates also are used with a bootstrap resampling procedure to compute confidence bounds for the total volume. The method was applied to data (partitioned into a training set and target set) from the Devonian Antrim Shale continuous-type gas play in the Michigan Basin in Otsego County, Michigan. The analysis showed that the model estimate of total recoverable volumes at prediction sites is within 4 percent of the total observed volume. The model predictions also provide frequency distributions of the cell volumes at the production unit scale. Such distributions are the basis for subsequent economic analyses.
Emil D. AttanasiEmail:
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号