首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   705篇
  免费   59篇
  国内免费   49篇
测绘学   26篇
大气科学   136篇
地球物理   186篇
地质学   212篇
海洋学   67篇
天文学   89篇
综合类   1篇
自然地理   96篇
  2024年   3篇
  2023年   3篇
  2022年   7篇
  2021年   27篇
  2020年   33篇
  2019年   21篇
  2018年   23篇
  2017年   26篇
  2016年   34篇
  2015年   33篇
  2014年   34篇
  2013年   48篇
  2012年   31篇
  2011年   46篇
  2010年   47篇
  2009年   49篇
  2008年   43篇
  2007年   50篇
  2006年   43篇
  2005年   32篇
  2004年   32篇
  2003年   21篇
  2002年   21篇
  2001年   16篇
  2000年   15篇
  1999年   6篇
  1998年   8篇
  1997年   7篇
  1996年   1篇
  1995年   7篇
  1994年   7篇
  1993年   5篇
  1992年   9篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1987年   1篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有813条查询结果,搜索用时 15 毫秒
721.
Spatial and temporal variability in surface water chemistry, organic soil chemistry and hydrologic indicators were investigated at three poor‐fen complexes in two boreal catchments in Northern Alberta to provide insight into the dominant controls on surface water chemistry. Improved understanding of these controls is required to enable prediction of runoff chemistry in the region under changing atmospheric deposition conditions. Surface water chemistry exhibited considerable variability; within each fen conductivity, dissolved organic carbon (DOC), and Cl tended to decrease and pH tended to increase with increasing distance from the lake edge. Variations in evaporative isotopic enrichment in 2H and 18O, expressed as deuterium excess, were used to distinguish between throughflow waters and those that were more evaporatively enriched. Throughflow surface waters were more acidic primarily due to higher concentrations of DOC and NO3. Exchangeable base saturation and pH of organic soils were strongly related to surface water chemistry at two of the fen complexes, demonstrating the capacity for cation exchange to influence surface water chemistry. Fen surface water concentrations of most elements and DOC increased during the summer period (between June and August), while pH of water decreased. Evaporative concentration of the surface waters was a dominant driver, with surface water temperature increasing at both catchments. Localized groundwater discharge was an important contributor of base cations to the fens, while the organic soils are sinks for atmospherically deposited SO42−, N and Cl. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
722.
During the last 50 years, several different forms of fisheries governance have been tried and failed in the Cochin Estuary, Kerala, India. The latest shift has been from a community-based system to a co-management system, and this paper evaluates the current system in the light of the theoretical debate over the respective merits of community-based management and co-management. The paper is based on documentary material and data from interviews carried out during fieldwork in 2004, from which it concludes that provided the co-management system incorporates community principles within it, it will be an effective form of fisheries governance.  相似文献   
723.
The skewness of subsurface temperature anomaly in the equatorial Pacific Ocean shows a significant asymmetry between the east and west.A positive temperature skewness appears in the equatorial eastern Pacific,while the temperature skewness in the western and central Pacific is primarily negative.There is also an asymmetry of the temperature skewness above and below the climatological mean thermocline in the central and western Pacific.A positive skewness appears below the thermocline,but the skewness is neg...  相似文献   
724.
725.
Top–down and bottom–up regulation in the form of grazing by herbivores and nutrient availability are important factors governing macroalgal communities in the coral reef ecosystem. Today, anthropogenic activities, such as over-harvesting of herbivorous fish and sea urchins and increased nutrient loading, are altering the interaction of these two structuring forces. The present study was conducted in Kenya and investigates the relative importance of herbivory and nutrient loading on macroalgal community dynamics, by looking at alterations in macroalgal functional groups, species diversity (H′) and biomass within experimental quadrats. The experiment was conducted in situ for 42 days during the dry season. Cages excluding large herbivorous fish and sea urchins were used in the study and nutrient addition was conducted using coated, slow-release fertilizer (nitrogen and phosphorous) at a site where herbivory is generally low and nutrient levels are relatively high for the region. Nutrient addition increased tissue nutrient content in the algae, and fertilized quadrats had 24% higher species diversity. Herbivore exclusion resulted in a 77% increase in algal biomass, mainly attributable to a >1000% increase in corticated forms. These results are in accordance with similar studies in other regions, but are unique in that they indicate that, even when prevailing nutrient levels are relatively high and herbivore pressure is relatively low, continued anthropogenic disturbance results in further ecological responses and increased reef degradation.  相似文献   
726.
Base-salt relief influences salt flow, producing three-dimensionally complex strains and multiphase deformation within the salt and its overburden. Understanding how base-salt relief influences salt-related deformation is important to correctly interpret salt basin kinematics and distribution of structural domains, which have important implications to understand the development of key petroleum system elements. The São Paulo Plateau, Santos Basin, Brazil is characterized by a >2 km thick, mechanically layered Aptian salt layer deposited above prominent base-salt relief. We use 3D seismic reflection data, and physical and conceptual kinematic models to investigate how gravity-driven translation above thick salt, underlain by complex base-salt relief, generated a complex framework of salt structures and minibasins. We show that ramp-syncline basins developed above and downdip of the main pre-salt highs record c. 30 km of Late Cretaceous-Paleocene basinward translation. As salt and overburden translated downdip, salt flux variations caused by the base-salt relief resulted in non-uniform motion of the cover, and the simultaneous development of extensional and contractional structures. Contraction preferentially occurred where salt flow locally decelerated, above landward-dipping base-salt and downdip of basinward-dipping ramps. Extension occurred at the top of basinward-dipping ramps and base-salt plateaus, where salt flow locally accelerated. Where the base of the salt layer was broadly flat, structures evolved primarily by load-driven passive diapirism. At the edge of or around smaller base-salt highs, salt structures were affected by plan-view rotation, shearing and divergent flow. The magnitude of translation (c. 30 km) and the style of salt-related deformation observed on the São Paulo Plateau afford an improved kinematic model for the enigmatic Albian Gap, suggesting this structure formed by a combination of basinward salt expulsion and regional extension. These observations contribute to the long-lived debate regarding the mechanisms of salt tectonics on the São Paulo Plateau, ultimately improving our general understanding of the effects of base-salt relief on salt tectonics in other basins.  相似文献   
727.
We investigate the elevated crater rims of lunar craters. The two main contributors to this elevation are a structural uplift of the preimpact bedrock and the emplacement of ejecta on top of the crater rim. Here, we focus on five lunar complex mare craters with diameters ranging between 16 and 45 km: Bessel, Euler, Kepler, Harpalus, and Bürg. We performed 5281 measurements to calculate precise values for the structural rim uplift and the ejecta thickness at the elevated crater rim. The average structural rim uplift for these five craters amounts to SRU = 70.6 ± 1.8%, whereas the ejecta thickness amounts to ET = 29.4 ± 1.8% of the total crater rim elevation. Erosion is capable of modifying the ratio of ejecta thickness to structural rim uplift. However, to minimize the impact of erosion, the five investigated craters are young, pristine craters with mostly preserved ejecta blankets. To quantify how strongly craters were enlarged by crater modification processes, we reconstructed the dimensions of the transient crater. The difference between the transient crater diameter and the final crater diameter can extend up to 11 km. We propose reverse faulting and thrusting at the final crater rim to be one of the main contributing factors of forming the elevated crater rim.  相似文献   
728.
Particulate organic matter (POM) transiting through rivers could be lost to overbank storage, stored in‐channel, added to by erosion or autochthonous production, or turned over to release greenhouse gases to the atmosphere (either while in the water column or while stored in the channel). In the UK, a net loss of POM across catchments has been recorded, and the aim here was to investigate the balances of processes acting on the POM. This study considered records of suspended sediment and POM flux in comparison to stream flow, velocity, stream power, and residence time for the River Trent (English Midlands, 8,231 km2). We show that for the lower two thirds (106 km) of the River Trent, 2% is lost to overbank storage; 10% is lost to the atmosphere in the water column; and 31% is turned over while in temporary storage. Permanent in‐channel storage is negligible, and for the lower course of the river, material stored in‐channel will have a residence time of the order of hundreds of days between the last flood hydrograph of one winter and the first winter storm of the next winter (usually in the same calendar year). When considered at the scale of the UK, 1% POM in transit would be lost to overbank sedimentation; 5% turned over in the water column, and 14% turned over while in temporary storage. In the upper third of the study river channel, there is insufficient stream power to transport sediment and so in‐channel storage or in‐channel turnover over to the atmosphere dominate. The in‐channel processes of the River Trent do not conform to that expected for river channels as the headwaters are not eroding or transporting sediment. Therefore, the source of sediment must be lower down the channel network.  相似文献   
729.
Mountain ranges are frequently subjected to mass wasting events triggered by storms or earthquakes and supply large volumes of sediment into river networks. Besides altering river dynamics, large sediment deliveries to alluvial fans are known to cause hydro‐sedimentary hazards such as flooding and river avulsion. Here we explore how the sediment supply history affects hydro‐sedimentary river and fan hazards, and how well can it be predicted given the uncertainties on boundary conditions. We use the 2D morphodynamic model Eros with a new 2D hydrodynamic model driven by a sequence of flood, a sediment entrainment/transport/deposition model and a bank erosion law. We first evaluate the model against a natural case: the 1999 Mount Adams rock avalanche and subsequent avulsion on the Poerua river fan (West Coast, New Zealand). By adjusting for the unknown sediment supply history, Eros predicts the evolution of the alluvial riverbed during the first post‐landslide stages within 30 cm. The model is subsequently used to infer how the sediment supply volume and rate control the fan aggradation patterns and associated hazards. Our results show that the total injected volume controls the overall levels of aggradation, but supply rates have a major control on the location of preferential deposition, avulsion and increased flooding risk. Fan re‐incision following exhaustion of the landslide‐derived sediment supply leads to sediment transfer and deposition downstream and poses similar, but delayed, hydro‐sedimentary hazards. Our results demonstrate that 2D morphodynamics models are able to capture the full range of hazards occurring in alluvial fans including river avulsion aggradation and floods. However, only ensemble simulations accounting for uncertainties in boundary conditions (e.g., discharge history, initial topography, grain size) as well as model realization (e.g., non‐linearities in hydro‐sedimentary processes) can be used to produce probabilistic hazards maps relevant for decision making. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
730.
To understand the moisture regime at the southern slopes of Mt. Kilimanjaro, we analysed the isotopic variability of oxygen (δ18O) and hydrogen (δD) of rainfall, throughfall, and fog from a total of 2,140 samples collected weekly over 2 years at 9 study sites along an elevation transect ranging from 950 to 3,880 m above sea level. Precipitation in the Kilimanjaro tropical rainforests consists of a combination of rainfall, throughfall, and fog. We defined local meteoric water lines for all 3 precipitation types individually and the overall precipitation, δDprec = 7.45 (±0.05) × δ18Oprec + 13.61 (±0.20), n  = 2,140, R 2 = .91, p  < .001. We investigated the precipitation‐type‐specific stable isotope composition and analysed the effects of amount, altitude, and temperature. Aggregated annual mean values revealed isotope composition of rainfall as most depleted and fog water as most enriched in heavy isotopes at the highest elevation research site. We found an altitude effect of δ18Orain = ?0.11‰ × 100 m?1, which varied according to precipitation type and season. The relatively weak isotope or altitude gradient may reveal 2 different moisture sources in the research area: (a) local moisture recycling and (b) regional moisture sources. Generally, the seasonality of δ18Orain values follows the bimodal rainfall distribution under the influences of south‐ and north‐easterly trade winds. These seasonal patterns of isotopic composition were linked to different regional moisture sources by analysing Hybrid Single Particle Lagrangian Integrated Trajectory backward trajectories. Seasonality of d excess values revealed evidence of enhanced moisture recycling after the onset of the rainy seasons. This comprehensive dataset is essential for further research using stable isotopes as a hydrological tracer of sources of precipitation that contribute to water resources of the Kilimanjaro region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号