首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   1篇
大气科学   1篇
地球物理   16篇
地质学   57篇
海洋学   2篇
天文学   44篇
  2023年   1篇
  2022年   4篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   10篇
  2017年   7篇
  2016年   8篇
  2015年   4篇
  2014年   6篇
  2013年   5篇
  2012年   3篇
  2011年   7篇
  2010年   3篇
  2009年   6篇
  2008年   3篇
  2007年   1篇
  2006年   7篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1995年   2篇
  1994年   2篇
  1992年   3篇
  1988年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有120条查询结果,搜索用时 15 毫秒
71.
Based on results of study of the regional position, chemical composition of ores, fluid inclusions, and age relationships between mineralization and igneous rocks, we propose a geological and genetic model for the formation of gold mineralization of the Zaderzhninskoe deposit. Mineralization is located in the tectonic node of the intersection of two regional structures in the supraintrusive zone of a latent granitoid pluton among the terrigenous rocks of the Verkhoyansk complex, which are regionally metamorphosed to the greenschist facies. The sequential deposition of three types of mineralization—Au-quartz (including early low-gold Au-As and late productive Au-Pb-Zn mineralization), Au-rare-metal, and Au-silver—has been established. The Au-Bi (Te) assemblage contains native bismuth, bismuthinite, hedleyite, Bi sulfotellurides, gustavite group minerals, and secondary minerals—Bi oxides and Bi tellurites with low-grade gold. Hg-containing electrum and kustelite, Ag-Sb and Ag-Pb-Sb sulfosalts, stutzite, Te-Pb-containing canfieldite, freibergite, and Au and Ag sulfides are indicator minerals of the Au-Ag (Sb) assemblage. Ore formation occurred at temperatures from 90 to 340 °C, with the participation of lowly and moderately concentrated solutions with CO2 ± CH4 ± N2 gas phase. A decrease in temperature from Au-quartz mineralization (200-220 °C) to the late epithermal one (160 °C) and a slight increase in the concentration of solutions (up to 10 wt.% NaCl equiv.) have been established. The deposit resulted from the intricate multistage geodynamic evolution of the South Verkhoyansk region. Ore-forming processes are associated with the evolution of magmatic objects. Dating of igneous rocks yields the following ages: diorites—130-137 Ma (Rb-Sr), spessartites—126 ± 3 Ma (Rb-Sr), and kersantites—115 ± 1.7 Ma (Ar/Ar). Early concordant Au-quartz (Au-As) mineralization of the deposit is comparable with metamorphic-related Au-quartz veins of the Yur-Bular type, and its age is taken as > 137 Ma. The time of formation of Au-quartz (Au-Pb-Zn) mineralization is estimated at 123.5 ± 1.6 Ma (Ar/Ar) and is coeval with the time of intrusion of the Early Cretaceous granitoids of the South Verkhoyansk region. The imposed low-temperature mineralization undoubtedly has a younger age. Its formation was followed by the successive deposition of Au-rare-metal mineralization at the final stage of formation of granitoid plutons (~ 120 Ma) and Au-Ag mineralization in the period 100 ± 5 Ma, i.e., the time of formation of late-stage granodiorite-granite intrusions.  相似文献   
72.
This work presents the results of tectonophysical modeling of tectonic deformations in the crystalline basement of the Scythian Plate, including estimated deformation values and stress-field orientations. The morphostructural parameters of the Earth’s surface, which were calculated using the LESSA program, were compared. In addition, some parameters of modern geodynamic processes that occur in the Scythian Plate, such as the level of seismicity and heat flow value, were calculated. The similarity between ancient and modern geodynamic processes allows us to propose that deformational processes in the crystalline basement of the Scythian Plate play a significant role in the formation of the modern topography and makes it possible to use morphostructural parameters of the relief for studying the deep structure of platform covers.  相似文献   
73.
74.
We consider the plasma mechanism of sub-terahertz emission from solar flares and determine the conditions for its realization in the solar atmosphere. The source is assumed to be localized at the chromospheric footpoints of coronal magnetic loops, where the electron density should reach n ≈ 1015 cm?3. This requires chromospheric heating at heights h ? 500 km to coronal temperatures, which provides a high degree of ionization needed for Langmuir frequencies ν p ≈ 200–400 GHz and reduces the bremsstrahlung absorption of the sub-THz emission as it escapes from the source. The plasma wave excitation threshold for electron-ion collisions imposes a constraint on the lower density limit for energetic electrons in the source, n 1 > 4 × 109 cm?3. The generation of emission at the plasma frequency harmonic ν ≈ 2ν p rather than the fundamental tone turns out to be preferred. We show that the electron acceleration and plasma heating in the sub-THz emission source can be realized when the ballooning mode of the flute instability develops at the chromospheric footpoints of a flare loop. The flute instability leads to the penetration of external chromospheric plasma into the loop and causes the generation of an inductive electric field that efficiently accelerates the electrons and heats the chromosphere in situ. We show that the ultraviolet radiation from the heated chromosphere emerging in this case does not exceed the level observed during flares.  相似文献   
75.
All four large EUV bursts (peak 10–1030 Å flux enhancements 2 ergs cm–2 s–1 at 1 AU as deduced from sudden frequency deviations), for which there were available concurrent white light observations of at least fair quality, were detected as white light flares. The rise times and maxima of the white light emissions coincided with rise times and maxima of the EUV bursts. The frequency of strong EUV bursts suggests that white light flares may occur at the rate of five or six per year near sunspot maximum. All of the white light flare areas coincided with intense bright areas of the H flares. These small areas appeared to be sources of high velocity ejecta in H. The white light flares occurred as several knots or patches of 2 to 15 arc-sec diameter, with bright cores perhaps less than 2 arc-sec diameter (1500 km). They preferred the outer penumbral borders of strong sunspots within 10 arc-sec of a longitudinal neutral line in the magnetic field. The peak continuum flux enhancement over the 3500–6500 Å wavelength range is about the same order of magnitude as the peak 10–1030 Å flux enhancement.  相似文献   
76.
Zaitsev  V. V.  Stepanov  A. V. 《Solar physics》1983,82(1-2):297-321
We survey the mathematics of non-linear Hamiltonian oscillations with emphasis being laid on the more recently discovered Kolmogorov instability. In the context of radial adiabatic oscillations of stars this formalism predicts a Kolmogorov instability even at low oscillation energies, provided that sufficiently high linear asymptotic modes have been excited. Numerical analysis confirms the occurrence of this instability. It is found to show up already among the lowest order modes, although high surface amplitudes are then required (¦δr¦/R ~ 0.5 for an unstable fundamental mode - first harmonic coupling). On the basis of numerical evidence we conjecture that in the Kolmogorov unstable regime the enhanced coupling due to internal resonance effects leads to an equipartition of energy over all interacting degrees of freedom. We also indicate that the power spectrum of such oscillations is expected to display two components: A very broad band of overlapping pseudo-linear frequency peaks spread out over the asymptotic range, and a strictly non-linear l/f-noise type component close to the frequency origin. It is finally argued that the Kolmogorov instability is likely to occur among non-linearly coupled non-radial stellar modes at a surface amplitude much lower than in the radial case. This lends support to the view that this instability might be operative among the solar oscillations.  相似文献   
77.
78.
Zaitsev  V. V.  Shibasaki  K. 《Astronomy Reports》2005,49(12):1009-1017

SOHO and TRACE data have shown that the coronal plasma is heated most actively near sunspots, in magnetic loops that issue from the penumbral region. The source of heating is nonuniform in height, and its power is maximum near the footpoints of the magnetic loops. The heating process is typically accompanied by the injection of dense chromospheric plasma into the coronal parts of the magnetic loops. It is important that the radiative losses cannot be compensated for via electron thermal conduction in the loops, which have temperatures of 1.0–1.5 MK; therefore, some heating source must operate throughout the entire length of the loop, balancing radiative losses and maintaining a quasi-steady state of the loop over at least several hours. As observations show, the plasma density inside the loops exceeds the density of the ambient plasma by more than an order of magnitude. It is supposed that the enhanced plasma density inside the loops results from the development of the ballooning mode of a flute-type instability in the sunspot penumbra, where the plasma of the inner sunspot region, with β i ? 1, comes into contact with the dense chromospheric plasma, which has β e ? β i (β is the gas-to-magnetic pressure ratio). As the chromospheric plasma penetrates into the potential field of the sunspot, the generated diamagnetic currents balance the excess gas pressure. These currents efficiently decay due to the Cowling conductivity. Even if neutrals are few in number in the plasma (accounting for less than 10?5 of the total mass density), this conductivity ensures a heating rate that exceeds the rate of the normal Joule dissipation of diamagnetic currents by 7–8 orders of magnitude. Helium is an important factor in the context of plasma heating in magnetic loops. Its relatively high ionization potential, while not forbidding dielectronic recombination, ensures a sufficiently high number of neutrals in the coronal plasma and maintains a high heating rate due to the Cowling conductivity, even at coronal temperatures. The heating results from the “burning-out” of the nonpotential component of the magnetic field of the coronal magnetic loops. This mechanism provides the necessary heating rate for the plasma inside the loops if the loops are thin enough (with thickness of the order of 105–106 cm). This may imply that the observed (1–5) × 108-cm-thick loops consist of numerous hot, thin threads. For magnetic loops in hydrostatic equilibrium, the calculated heating function exponentially decreases with height on characteristic scales a factor of 1.8 smaller than the total-pressure scale height, since the scale heights for the total pressure and for the 4He partial pressure are different. The heating rate is proportional to the square of the plasma pressure in the loop, in agreement with observational data.

  相似文献   
79.
Clays and the pelitic component from the insoluble residue in carbonate Lower-Middle Ordovician rocks in the Norwest of the Russian Platform were examined in detail using X-ray diffractometry, and the comparative distribution of clay minerals in the succession in different parts of the paleobasin was examined. A comparative study of clay mineral distribution down the section and in different parts of the paleobasin was undartaken. This provided a basis for proposing possible sources of terrigenous clay material, the means of its transportation, and its evolution in the marine basin. The conclusion was drawn, based on the distribution of chlorite and kaolinite in different parts of the basin, that weathered rocks that originated in different climatic environments were the sources of these minerals.  相似文献   
80.
Echo-type solar radio bursts are associated with preceding short-lived bursts in double events. The peculiar and rather rare decameter echoes are observed with a UTR-2 antenna. The initial narrow-band burst is followed, some 5 to 10 s later, by an echo-like burst at the same frequency. The observational data obtained for decameter echo evens are, on the whole, consistent with the model of a pulsed source emitting radio signals at the plasma-frequency harmonic, which is placed in a non-uniform corona and rotates together with the Sun.Intensity-time profiles of 25 MHz echo bursts are of an unusual shape, featuring an extended leading edge and an abrupt decay at the trailing edge and also showing some fine structures in the form of an additional, weakly pronounced maximum or a step at the final stage of the burst. Time parameters characterizing the profiles are evaluated. The step is delayed with respect to the main pulse at about two times longer than the principal echo maximum. At the same time, the time delays depend essentially on the heliolongitude of the active region and achieve their maximum values at the meridian. The step height does not exceed 0.5 of the echo maximum. At this level, the echo-decay time almost coincides with the initial burst duration but is about 1.7 times less than the echo-rise time. The feature at the echo tail can be interpreted as a result of a repeated reflection of the burst from the source region. The causes and conditions for the formation of multiple echoes are discussed. The extended leading edge of the echo permits us to assume a quasi-radial fibrous structure of the corona, capable of back-scattering the incident radiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号