首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   1篇
测绘学   1篇
大气科学   2篇
地球物理   33篇
地质学   44篇
海洋学   1篇
天文学   2篇
自然地理   2篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2014年   2篇
  2013年   3篇
  2012年   6篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2002年   3篇
  2000年   1篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   3篇
  1984年   3篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1967年   3篇
  1965年   1篇
  1964年   1篇
  1963年   1篇
  1961年   2篇
  1960年   1篇
  1959年   1篇
  1958年   2篇
  1948年   1篇
排序方式: 共有85条查询结果,搜索用时 36 毫秒
51.
The chronology and origin of volcanism of Ascension Island, South Atlantic Ocean, is poorly resolved. Here we use in situ produced cosmogenic 3He in olivine and pyroxene phenocrysts from well-preserved lava flows to date the main sub-aerial basalt volcanism on the island. Etching olivine separates in HF/HNO3 appears to remove a significant proportion of the implanted radiogenic 4He contribution. Average exposure ages of each flow corrected for radiogenic He range from 328 ka to 186 ka and are used to refine the chronology and stratigraphy of the island. Magmatic 3He/4He ratios derived from in vacuo crushing are in the range of 6.3–7.3 RA. This range is lower than the neighbouring Mid-Atlantic Ridge segment (6–8°S) but slightly higher than measured in regional ocean islands of St. Helena, Tristan da Cunha and Gough. Combining these data with new trace element data and published radiogenic isotope ratios it appears that the Ascension Island magmatism is a mix of HIMU mantle material, typified by basalts from St. Helena, and depleted MORB-source mantle.  相似文献   
52.
We propose guidelines for the reporting of in situ cosmogenic nuclide data for exposure age and erosion rate determinations. This is motivated by the need to maintain the utility of such data in the future, and to delineate best scientific practice. These guidelines will allow published exposure ages and erosion rates to be recalculated with confidence by others in the future, if, as is likely, procedures to calculate cosmogenic nuclide production rates are modified in the meantime.  相似文献   
53.
Trace element concentrations of peridotitic garnet inclusions in diamonds from two Chinese kimberlite pipes were determined using the ion microprobe. Garnet xenocrysts from the same two kimberlite pipes were also analyzed for comparison. In contrast to their extremely refractory major element compositions, all harzburgitic garnets showed enrichment in light rare earth elements (REE) relative to chondrite, resulting in sinuous REE patterns. Both normal and sinuous REE patterns were observed from the lherzolitic garnets. Concentrations of REE in garnets changed significantly from diamond to diamond and no specific correlations were observed with their major element compositions. Analyses of randomly selected two to three points within every grain of a large number of garnet inclusions by the ion microprobe demonstrated that there was no evident compositional heterogeneity, and multiple grains of one phase from a single diamond host also exhibit very similar compositions. This implies that the trace element heterogeneity within one grain or among multiple inclusions from the same diamond host, as reported from Siberian diamonds, is not a common feature for these Chinese diamonds. Concentrations of Na, Ti, and Zr tend to decrease when garnets become more refractory, but variations of Sr and Li are more complex. Compositions rich in light REE and relatively poor in high field strength elements (HFSE) of the harzburgitic garnet inclusions in diamonds are generally consistent with metasomatism by carbonatite melts. The trace element features observed from the garnet inclusions in Chinese diamonds may be caused by carbonatite melt infiltration and partial melt extraction. Spatial and temporal gradients in melt/rock ratio and temperature are the main reasons for the large variations of REE patterns and other trace element concentrations. Received: 27 April 1999 / Accepted: 1 March 2000  相似文献   
54.
Small-volume alkali basaltic volcanism has occurred intermittently for the past + 30 My across a vast area of thick continental crust from southern Siberia, through Mongolia to northeast China. With a lack of evidence for Basin-and-Range-type crustal extension or rifting, models to explain the widely dispersed, yet long-lived, volcanism tend to favour involvement of one or more mantle plume(s). We examine the range of 3He/4He isotope values in olivine phenocrysts from basalts, and their entrained mantle xenoliths, from Hamar Daban in southern Siberia, and Hangai in central Mongolia, in order to examine whether upwelling lower mantle appears to be present beneath central Asia and thus test the validity of the plume model for this region. Our results show that the maximum 3He/4He value for the Siberian basalts is 8.12 ± 0.2Ra, and the maximum value for Mongolian basalts is 9.5 ± 0.5Ra. These values suggest that there is no significant contribution from a high 3He/4He primordial component that would strongly argue a lower mantle source. Overlap with commonly reported values for MORB leads us to propose that the source of the magmatism derives from the shallow asthenosphere. Alternative models to a deeply sourced mantle plume that may be able to explain the magmatism include: a shallow thermal anomaly confined to the upper mantle but either fed laterally or caused by thermal blanketing of the large Asian landmass; replacement or delamination of the lowermost lithosphere in response to tectonic stresses; or large-scale mantle disturbance or overturn caused by a protracted history of subduction beneath central Asia that ended regionally with the Jurassic closure of the Mongol-Okhotsk Ocean, but continues further afield with the present Indo-Asia collision.  相似文献   
55.
Mn, Sr, Ba, Rb, Cu, Zn, Pb and Cd concentrations have been measured seasonally in the water and deposited sediments of the system comprising: Zala river (main input) — Lakes Kis-Balaton 1 and 2 (small artificial lakes created in a former bay of Lake Balaton) — Keszthely bay (hypertrophic part of Lake Balaton). The concentrations of the trace elements together with pH, alkalinity, dissolved cations (Ca2+, Mg2+, Na+, and K+), dissolved inorganic ligands (Cl, SO4 2–), particulate Al, Ca, inorganic and organic carbon are used to assess the contamination of the study area and biogeochemical processes controlling trace element concentrations. Thermodynamic speciation calculations have also been utilized to enhance our understanding of the system. In the sediments Rb, Ba, Cu and Zn concentrations were mainly controlled by the abundance of the aluminosilicate fraction. Strontium was mainly associated with the calcium carbonate fraction. The aluminosilicate fraction constitutes a major sink for Mn and Cd but the concentration of these elements are also strongly related to calcite precipitation. The main processes that control the dissolved distribution of trace elements in the Balaton system were: solid phase formation (carbonate) for Mn; coprecipitation with calcite for Sr, Ba, Rb and possibly Mn and Cd; adsorption/desorption processes (pH dependent) for Zn and Pb; solubilization of Mn and precipitation of Cd and Cu in reed covered wetland areas where anoxic conditions were probably existing during the warm season. A preliminary budget of atmospheric and river input to Lake Balaton has also been outlined. Although Lake Balaton, is subjected to anthropogenic inputs mainly from agricultural and domestic activities, their impact on trace element concentrations in the Balaton system is very limited due to the efficiency of removal processes (i.e. adsorption and co-precipitation) and to high sedimentation rates and strong sediment re-suspension. Anthropogenic inputs are only detected for Pb.  相似文献   
56.
Frequently, at temperatures lower than the metamorphic peak conditions, slates undergo mineral transformations, usually mediated by fluids. We have studied core material of an epizonal slate series (Szendr? Mountains, NE-Hungary) to reconstruct the post-metamorphic lower-T hydrothermal alterations using petrographic, X-ray diffraction, electron microprobe methods, and transmission electron microscopy. The borehole crosscuts an upper part of the ca. 600?C800?m Lower-Carboniferous flysch-like Szendr? Phyllite Formation. The samples were metamorphosed reaching epizonal conditions with a mineral assemblage characterized by quartz, muscovite, chlorite and albite. Even in the freshest samples, break-up and loosening of the regional metamorphic structure was observed, with cracks parallel to or crossing the cleavage. In the upper part, chlorite and albite are almost absent, while the presence of paragonite, mixed Na?CK mica, and mixed-layered minerals with smectitic component are characteristic. Goethite, halloysite, and subordinate kaolinite are present in the most altered sample (13.0?m in the profile) which may indicate the position of the fissures in which the circulation of the post-metamorphic fluids was the most intense. Muscovite is the only mica from the lower part of the profile and chlorite becomes a significant constituent, whereas paragonite, halloysite, and kaolinite are missing. Discrete smectite is present in all the samples in spite of being incompatible with the prograde evolution of the sequence. The interleaved smectite layers in chlorite and muscovite/chlorite mixed-layers show at the lattice level textural characteristics indicative of a later alteration process. After the metamorphic peak at epizonal conditions, the introduction of hot fluids through the fractures gave rise to the crystallization of Na?CK white micas and muscovite/chlorite under anchizonal conditions. In a final stage of the hydrothermal process, the cooling of the circulating fluids favored the formation of halloysite and kaolinite in the areas near to the fissures, smectites in the samples far away from the fractures, and locally, goethite. The Fe2O3 content increasing upwards indicates oxidizing conditions in the late stage of hydrothermal activity and/or eventually, an influence of a younger near-surface weathering.  相似文献   
57.
Advances in the chemical and isotopic characterisation of geological and environmental materials can often be ascribed to technological improvements in analytical hardware. Equally, the creation of novel methods of data acquisition and interpretation, including access to better reference materials, can also be crucial components enabling important breakthroughs. This biennial review highlights key advances in either instrumentation or data acquisition and treatment, which have appeared since January 2010. This review is based on the assessments by scientists prominent in each of the given analytical fields; it is not intended as an exhaustive summary, but rather provides insight from experts of the most significant advances and trends in their given field of expertise. In contrast to earlier reviews, this presentation has been formulated into a unified work, providing a single source covering a broad spectrum of geoanalytical techniques. Additionally, some themes that were not previously emphasised, in particular thermal ionisation mass spectrometry, accelerator‐based methods and vibrational spectroscopy, are also presented in detail.  相似文献   
58.
59.
We investigate the influence of the regional-scale weather types on the atmospheric dispersion processes of the air pollutants originated from point sources. Hypothetical accidents were simulated with two different dispersion models. During a year’s test period, the 6-h emission of a radionuclide from the Paks Nuclear Power Plant (Paks NPP, Hungary) was assumed every day and the transport and deposition of the radionuclide was simulated by the Eulerian TREX dispersion model over the Central European region. In addition, the ALOHA Gaussian air dispersion model was also used for the local environment of the Paks NPP to simulate hypothetical hourly releases of ammonia during a 10-year period. During both types of model simulations, the dispersion of the plume for each time was analysed and tested with consideration of 13 circulation types corresponding to daily weather patterns over the Carpathian Basin. There are significant correlations between circulation types and plume directions and structures both in local and regional scales. The daily circulation pattern can be easily obtained from weather analyses; the expected size and direction of polluted area after an accidental release can be quickly estimated even before an accident occurs. However, this fast method cannot replace or neglect dispersion model simulations. It gives a ‘first guess’ and a fast estimation on the direction of the plume and can provide sufficient information for decision-making strategies.  相似文献   
60.
This study aims at a new quantification of neotectonic deformation of the central part of the Pannonian Basin. We use terrace levels and associated travertine as well as speleothem data along the Danube River to quantify its incision rate and thus, estimate the amount and rate of uplift at the axis of the Hungarian Mountain Range (HMR).

Several terrace levels and other geomorphic features along the Danube river are indicative for Quaternary uplift of the axial part of the emerging Hungarian Mountain Range. While the correlative terraces are at considerable height at the axis of the HMR, the terraces are gradually dipping below the basin fill of the adjacent lowlands. The correlation of the terrace segments is difficult because of their poor preservation, small size and variable height. The geomorphologic horizons indicate gradual incision of the river throughout the Quaternary during simultaneous deformation. However, no reliable chronological data have been available so far to quantify landscape-forming processes such as uplift, incision or erosion rates.

A reconsideration of existing published data for three consecutive segments of the Danube valley yields incision rates between 0.14 and 0.41 mm/year for the last 360 ky, with the highest value for the area of the Danube Bend. Accordingly, the middle to late Quaternary uplift rate of the axial zone of the HMR exceeded significantly that of the marginal areas. These rates represent an approximation as some quantitative data are still controversial. Our results suggest that formation of the Danube terraces is result of river incision triggered by the uplift of the HMR and modified by periodic climate changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号