首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29472篇
  免费   452篇
  国内免费   938篇
测绘学   1560篇
大气科学   2340篇
地球物理   6539篇
地质学   13244篇
海洋学   1205篇
天文学   2405篇
综合类   2175篇
自然地理   1394篇
  2022年   44篇
  2021年   105篇
  2020年   106篇
  2019年   78篇
  2018年   4913篇
  2017年   4192篇
  2016年   2871篇
  2015年   490篇
  2014年   349篇
  2013年   377篇
  2012年   1272篇
  2011年   2898篇
  2010年   2209篇
  2009年   2506篇
  2008年   2045篇
  2007年   2459篇
  2006年   198篇
  2005年   316篇
  2004年   516篇
  2003年   524篇
  2002年   334篇
  2001年   139篇
  2000年   142篇
  1999年   67篇
  1998年   109篇
  1997年   72篇
  1996年   45篇
  1995年   72篇
  1994年   83篇
  1993年   48篇
  1992年   47篇
  1991年   43篇
  1990年   60篇
  1989年   45篇
  1988年   42篇
  1987年   38篇
  1986年   44篇
  1985年   49篇
  1984年   40篇
  1983年   45篇
  1982年   51篇
  1981年   63篇
  1980年   62篇
  1979年   40篇
  1978年   51篇
  1977年   42篇
  1976年   34篇
  1975年   40篇
  1973年   44篇
  1971年   40篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
This paper presents an advanced 3D numerical methodology to reproduce the kinematics of slow active landslides, more precisely, to reproduce the nearly constant strain rate (secondary creep) and the acceleration/deceleration of the moving mass due to hydrological changes. For this purpose, finite element analyses are performed in a large area covering a long time-span (12 years), in order to exhibit different interacting slope movements. First, we perform a stability analysis using the shear strength reduction (SSR) technique with a Mohr-Coulomb failure criteria. It is done in order to compute factors of safety (FS) and to identify two different scenarios, the first one being stable (FS > 1) and the second one being unstable (FS < 1). In the studied test case, the Portalet landslide (Central Spanish Pyrenees), the first scenario corresponds to an initial stable configuration of the slope and the second one to an unstable excavated configuration. Second, taking the first scenario as an initial condition, a time-dependent analysis is performed using a coupled formulation to model solid skeleton and pore fluids interaction, and a simplified ground water model that takes into account daily rainfall intensity. In this case, a viscoplastic constitutive model based on Perzyna’s theory is applied to reproduce soil viscous behavior and the delayed creep deformation due to the excavation. The fluidity parameter is calibrated to reproduce displacements measured by the monitoring systems. Our results demonstrate that 3D analyses are preferable to 2D ones for reproducing in a more realistic way the slide behavior. After calibration, the proposed model is able to simulate successfully short- and medium-term predictions during stages of primary and secondary creep.  相似文献   
992.
Given its geological and climatic conditions and its rugged orography, Asturias is one of the most landslide prone areas in the North of Spain. Most of the landslides occur during intense rainfall episodes. Thus, precipitation is considered the main triggering factor in the study area, reaching average annual values of 960 mm. Two main precipitation patterns are frequent: (i) long-lasting periods of moderate rainfall during autumn and winter and (ii) heavy short rainfall episodes during spring and early summer. In the present work, soil moisture conditions in the locations of 84 landslides are analysed during two rainfall episodes, which represent the most common precipitation patterns: October–November 2008 and June 2010. Empirical data allowed the definition of available water capacity percentages of 99–100% as critical soil moisture conditions for the landslide triggering. Intensity-duration rainfall thresholds were calculated for each episode, considering the periods with sustained high soil moisture levels before the occurrence of each analysed landslide event. For this purpose, data from daily water balance models and weather stations were used. An inverse relationship between the duration of the precipitation and its intensity, consistent with published intensity-duration thresholds, was observed, showing relevant seasonal differences.  相似文献   
993.
A smoothed particle hydrodynamics (SPH) numerical modeling method implemented for the forward simulation of propagation and deposition of flow-type landslides was combined with different empirical geomorphological index approaches for the assessment of the formation of landslide dams and their possible evolution for a local case study in southwestern China. The SPH model was calibrated with a previously occurred landslide that formed a stable dam impounding the main river, and it enabled the simulation of final landslide volumes, and the spatial distribution of the resulting landslide deposits. At four different sites on the endangered slope, landslides of three different volumes were simulated, respectively. All landslides deposited in the main river, bearing the potential for either stable impoundment of the river and upstream flooding scenarios, or sudden breach of incompletely formed or unstable landslide dams and possible outburst floods downstream. With the empirical indices, none of the cases could be identified as stable formed landslide dam when considering thresholds reported in the literature, showing up the limitations of these indices for particular case studies of small or intermediate landslide volumes and the necessity to adapt thresholds accordingly for particular regions or sites. Using the occurred benchmark landslide as a reference, two cases could be identified where a complete blockage occurs that is more stable than the reference case. The other cases where a complete blockage was simulated can be considered as potential dam-breach scenarios.  相似文献   
994.
Rockfall hazards increase the risk of train derailment along railway corridors in western Canada. In this study, repeated terrestrial laser scanning (TLS) datasets were collected every 2–3 months at three different sites along the Thompson and Fraser River corridors in British Columbia, referred to as the Goldpan, White Canyon, and Mile 109 sites. A total of 207 rockfall events occurring across all three sites between November 11, 2014 and October 18, 2016 were recorded in a database. For each of these rockfalls, pre-failure deformation was measured using a method of three-dimensional roto-translation block tracking. Each rockfall was classified by its deformation behaviour and further categorised based on failure mechanism, volume, lithology, and the roughness condition of the failure plane. Results reveal that detectable levels of deformation were measured in 33% of the total number of rockfall events using the present methods. Rotation deformation was most commonly observed in toppling failures with relatively steep joint orientations. Conversely, planar sliding blocks generally exhibited the least measurable deformation, with the majority not showing any precursory translation or rotation. It is postulated that overhanging rockfall configurations may suppress the expression of deformation in rockfall source blocks, though additional research is required to confirm this.  相似文献   
995.
This paper proposes and demonstrates a two-layer depth-averaged model with non-hydrostatic pressure correction to simulate landslide-generated waves. Landslide (lower layer) and water (upper layer) motions are governed by the general shallow water equations derived from mass and momentum conservation laws. The landslide motion and wave generation/propagation are separately formulated, but they form a coupled system. Our model combines some features of the landslide analysis model DAN3D and the tsunami analysis model COMCOT and adds a non-hydrostatic pressure correction. We use the new model to simulate a 2007 rock avalanche-generated wave event at Chehalis Lake, British Columbia, Canada. The model results match both the observed distribution of the rock avalanche deposit in the lake and the wave run-up trimline along the shoreline. Sensitivity analyses demonstrate the importance of accounting for the non-hydrostatic dynamic pressure at the landslide-water interface, as well as the influence of the internal strength of the landslide on the size of the generated waves. Finally, we compare the numerical results of landslide-generated waves simulated with frictional and Voellmy rheologies. Similar maximum wave run-ups can be obtained using the two different rheologies, but the frictional model better reproduces the known limit of the rock avalanche deposit and is thus considered to yield the best overall results in this particular case.  相似文献   
996.
Landslides triggered by the 2016 Mj 7.3 Kumamoto,Japan, earthquake   总被引:2,自引:0,他引:2  
The aim of this study is to establish a detailed and complete inventory of the landslides triggered by the Mj 7.3 (Mw 7.0) Kumamoto, Japan, earthquake sequence of 15 April 2016 (16 April in JST). Based on high-resolution (0.5–2 m) optical satellite images, we delineated 3,467 individual landslides triggered by the earthquake, occupying an area of about 6.9 km2. Then they were validated by aerial photographs with very high-resolution (better than 0.5 m) and oblique field photos. Of them, 3,460 landslides are distributed in an elliptical area about 6000 km2, with a NE-SW directed 120-km-long long axis and a 60-km-long NW-SE trending short axis. Most of the landslides are shallow, disrupted falls and slides, with a few flow-type slides and rock and soil avalanches. The analysis of correlation between the landslides and several control factors shows the areas of elevation 1000–1200 m, stratum of Q3-Hvf, seismic intensity VIII and VIII+, and peak ground acceleration (PGA) 0.4–0.6 g register the highest landslide abundance. This study also discussed the relationship between the spatial pattern of the landslides and the seismotectonic structure featured by a strike-slip fault with a normal component and the volcanism in the study area.  相似文献   
997.
Information about the next Kokomeren Summer School that will take place on August 15–30, 2018, is provided.  相似文献   
998.
Since Holocene time, above-mean precipitations recorded during the El Niño warm ENSO phase have been linked to the occurrence of severe debris flows in the arid Central Andes. The 2015–2016 El Niño, for its unusual strength, began driving huge and dangerous landslides in the Central Andes (32°) in the recent South Hemisphere summer. The resulting damages negatively impacted the regional economy. Despite this, causes of these dangerous events were ambiguously reported. For this reason, a multidisciplinary study was carried out in the Mendoza River valley. Firstly, a geomorphological analysis of affected basins was conducted, estimating morphometric parameters of recorded events such as velocity, stream flow, and volume. Atmospheric conditions during such events were analyzed, considering precipitations, snow cover, temperature range, and the elevation of the zero isotherm. Based on our findings, the role of El Niño on the slope instability in the Central Andes is more complex in the climate change scenario. Even though some events were effectively triggered by intense summer rainstorm following expectations, the most dangerous events were caused by the progressive uplifting of the zero isotherm in smaller basins where headwaters are occupied by debris rock glaciers. Our research findings give light to the dynamic coupled system ENSO–climate change–landslides (ECCL) at least in this particular case study of the Mendoza River valley. Landslide activity in this Andean region is driven by wetter conditions linked to the ENSO warm phase, but also to progressive warming since the twentieth century in the region. This fact emphasizes the future impact of the natural hazards on Andean mountain communities.  相似文献   
999.
1000.
Large landslides and deep-seated gravitational slope deformations (DSGSD) represent an important geo-hazard in relation to the deformation of large structures and infrastructures and to the associated secondary landslides. DSGSD movements, although slow (from a few millimetres to several centimetres per year), can continue for very long periods, producing large cumulative displacements and undergoing partial or complete reactivation. Therefore, it is important to map the activity of such phenomena at a regional scale. Ground surface displacements at DSGSD typically range close to the detection limit of monitoring equipment but are suitable for synthetic aperture radar (SAR) interferometry. In this paper, permanent scatterers (PSInSAR?) and SqueeSAR? techniques are used to analyse the activity of 133 DSGSD, in the Central Italian Alps. Statistical indicators for assigning a degree of activity to slope movements from displacement rates are discussed together with methods for analysing the movement and activity distribution within each landslide. In order to assess if a landslide is active or not, with a certain degree of reliability, three indicators are considered as optimal: the mean displacement rate, the activity index (ratio of active PS, displacement rate larger than standard deviation, overall PS) and the nearest neighbor ratio, which allows to describe the degree of clustering of the PS data. According to these criteria, 66% of the phenomena are classified as active in the monitored period 1992–2009. Finally, a new methodology for the use of SAR interferometry data to attain a classification of landslide kinematic behaviour is presented. This methodology is based on the interpretation of longitudinal ground surface displacement rate profiles in the light of numerical simulations of simplified failure geometries. The most common kinematic behaviour is rotational, amounting to 41 DSGSDs, corresponding to the 62.1% of the active phenomena.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号