首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6897篇
  免费   235篇
  国内免费   76篇
测绘学   182篇
大气科学   561篇
地球物理   1625篇
地质学   2532篇
海洋学   517篇
天文学   1175篇
综合类   29篇
自然地理   587篇
  2022年   36篇
  2021年   90篇
  2020年   89篇
  2019年   110篇
  2018年   197篇
  2017年   185篇
  2016年   203篇
  2015年   166篇
  2014年   237篇
  2013年   356篇
  2012年   264篇
  2011年   371篇
  2010年   283篇
  2009年   350篇
  2008年   303篇
  2007年   262篇
  2006年   236篇
  2005年   241篇
  2004年   229篇
  2003年   201篇
  2002年   220篇
  2001年   119篇
  2000年   141篇
  1999年   129篇
  1998年   125篇
  1997年   116篇
  1996年   108篇
  1995年   94篇
  1994年   85篇
  1993年   93篇
  1992年   64篇
  1991年   60篇
  1990年   61篇
  1989年   55篇
  1988年   61篇
  1987年   84篇
  1986年   69篇
  1985年   83篇
  1984年   97篇
  1983年   79篇
  1982年   93篇
  1981年   69篇
  1980年   76篇
  1979年   68篇
  1978年   62篇
  1977年   56篇
  1976年   51篇
  1975年   58篇
  1974年   52篇
  1973年   50篇
排序方式: 共有7208条查询结果,搜索用时 15 毫秒
171.
Calculations of the trapping of heavy noble gases within multiple guest clathrates under Mars-like conditions show that a substantial fraction of the martian Xe, perhaps even the vast majority, could be in clathrates. In addition, the Xe/Kr ratio in the clathrates would probably be much higher than in the atmosphere, so the formation or dissociation of a relatively small amount of clathrate could measurably change the atmospheric ratio. Relatively crude (factor of 2) measurements of the seasonal variability in that ratio by in situ spacecraft would be sensitive to ∼10% of the seasonal atmospheric CO2 variability being a result of clathrates, rather than pure CO2 frost. In addition, sequestration of Xe in clathrates remains a viable mechanism for explaining the variable Xe/Kr ratios seen in different suites of martian meteorites.  相似文献   
172.
Epimetheus, a small moon of Saturn, has a rotational libration (an oscillation about synchronous rotation) of 5.9°±1.2°, placing Epimetheus in the company of Earth’s Moon and Mars’ Phobos as the only natural satellites for which forced rotational libration has been detected. The forced libration is caused by the satellite’s slightly eccentric orbit and non-spherical shape.Detection of a moon’s forced libration allows us to probe its interior by comparing the measured amplitude to that predicted by a shape model assuming constant density. A discrepancy between the two would indicate internal density asymmetries. For Epimetheus, the uncertainties in the shape model are large enough to account for the measured libration amplitude. For Janus, on the other hand, although we cannot rule out synchronous rotation, a permanent offset of several degrees between Janus’ minimum moment of inertia (long axis) and the equilibrium sub-Saturn point may indicate that Janus does have modest internal density asymmetries.The rotation states of Janus and Epimetheus experience a perturbation every 4 years, as the two moons “swap” orbits. The sudden change in the orbital periods produces a free libration about synchronous rotation that is subsequently damped by internal friction. We calculate that this free libration is small in amplitude (<0.1°) and decays quickly (a few weeks, at most), and is thus below the current limits for detection using Cassini images.  相似文献   
173.
The known close approach of Asteroid (99942) Apophis in April 2029 provides the opportunity for the case study of a potentially hazardous asteroid in advance of its encounter. The visible to near-infrared (0.55 to 2.45 μm) reflectance spectrum of Apophis is compared and modeled with respect to the spectral and mineralogical characteristics of likely meteorite analogs. Apophis is found to be an Sq-class asteroid that most closely resembles LL ordinary chondrite meteorites in terms of spectral characteristics and interpreted olivine and pyroxene abundances, although we cannot rule out some degree of partial melting. A meteorite analog allows some estimates and conjectures of Apophis' possible range of physical properties such as the grain density and micro-porosity of its constituent material. Composition and size similarities of Apophis with (25143) Itokawa suggest a total porosity of 40% as a “current best guess” for Apophis. Applying these parameters to Apophis yields a mass estimate of 2×1010 kg with a corresponding energy estimate of 375 Mt for its potential hazard. Substantial unknowns, most notably the total porosity, allow uncertainties in these mass and energy estimates to be as large as factors of two or three.  相似文献   
174.
Calculations of the daily solar radiation incident at the top of the atmospheres of Jupiter, Saturn, Uranus, and Neptune, with and without the effect of the oblateness, are presented in a series of figures illustrating the seasonal and latitudinal variation of the ratio of both insolations. It is shown that for parts of the summer, the daily insolation of an oblate planet is increased, the zone of enhanced solar radiation being strongly dependent upon the obliquity, whereas the rate of increase is fixed by both the flattening and the obliquity. In winter, the oblateness effect results in a more extensive polar region, the daily solar radiation of an oblate planet always being reduced when compared to a spherical planet. In addition, we also numerically studied the mean daily solar radiation. As previously stated by A.W. Brinkman and J. McGregor (1979, Icarus, 38, 479–482), it is found that in summer the horizon plane is tilted toward the Sun for latitudes less than the subsolar point, but is titled away from the Sun beyond this latitude. It follows that the mean summer daily insolation is increased between the equator and the subsolar point, but decreased poleward of the above-mentioned limit. In winter, however, the horizon plane is always tilted away from the Sun, causing the mean winter daily insolation to be reduced. The partial gain of the mean summertime insolation being much smaller than the loss during winter season evidently yields a mean annual daily insolation which is decreased at all latitudes.  相似文献   
175.
Over one thousand objects have so far been discovered orbiting beyond Neptune. These trans-Neptunian objects (TNOs) represent the primitive remnants of the planetesimal disk from which the planets formed and are perhaps analogous to the unseen dust parent-bodies in debris disks observed around other main-sequence stars. The dynamical and physical properties of these bodies provide unique and important constraints on formation and evolution models of the Solar System. While the dynamical architecture in this region (also known as the Kuiper Belt) is becoming relatively clear, the physical properties of the objects are still largely unexplored. In particular, fundamental parameters such as size, albedo, density and thermal properties are difficult to measure. Measurements of thermal emission, which peaks at far-IR wavelengths, offer the best means available to determine the physical properties. While Spitzer has provided some results, notably revealing a large albedo diversity in this population, the increased sensitivity of Herschel and its superior wavelength coverage should permit profound advances in the field. Within our accepted project we propose to perform radiometric measurements of 139 objects, including 25 known multiple systems. When combined with measurements of the dust population beyond Neptune (e.g. from the New Horizons mission to Pluto), our results will provide a benchmark for understanding the Solar debris disk, and extra-solar ones as well.  相似文献   
176.
Abstract— Elephant Moraine (EET) A79001 is the only Martian meteorite that consists of both an olivine‐phyric shergottite (lithology A) and a basaltic shergottite (lithology B). The presence of these lithologies in one rock has previously been ascribed to mixing processes (either magmatic or impact‐induced). Here we present data regarding phase changes across the contact between the lithologies. These data show that the contact is gradational and suggest that it is a primary igneous feature consistent with crystallization of a single cooling magma. We present a model to establish a petrogenetic connection between an olivine‐phyric and a basaltic shergottite through differentiation. The model involves the shallow or surface emplacement of a magma that contained pre‐eruptive solids (phenocrysts and minor xenocrysts). Subsequent differentiation via crystal settling and in situ crystallization (Langmuir 1989) resulted in a layered sequence of lithology A overlain by lithology B, with gradations in modal abundance of maskelynite (increasing from A to B) and pigeonite/maskelynite (decreasing from A to B), and a gradational change in pattern of pyroxene zonation (zones of magnesian augite separating magnesian and ferroan pigeonite appear and thicken into B) across the contact. A pigeonite phenocryst‐bearing zone near the contact in lithology B appears to be intermediate between lithology A and the bulk of lithology B (which resembles basaltic shergottite Queen Alexandra Range [QUE] 94201). Re‐examination of Sr isotopic compositions in lithology A and across the contact is required to test and constrain the model.  相似文献   
177.
We present the results of applying new object classification techniques to the supernova search of the Nearby Supernova Factory. In comparison to simple threshold cuts, more sophisticated methods such as boosted decision trees, random forests, and support vector machines provide dramatically better object discrimination: we reduced the number of nonsupernova candidates by a factor of 10 while increasing our supernova identification efficiency. Methods such as these will be crucial for maintaining a reasonable false positive rate in the automated transient alert pipelines of upcoming large optical surveys. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
178.
We have used Cassini stereo images to study the topography of Iapetus' leading side. A terrain model derived at resolutions of 4-8 km reveals that Iapetus has substantial topography with heights in the range of −10 km to +13 km, much more than observed on the other middle-sized satellites of Saturn so far. Most of the topography is older than 4 Ga [Neukum, G., Wagner, R., Denk, T., Porco, C.C., 2005. Lunar Planet. Sci. XXXVI. Abstract 2034] which implies that Iapetus must have had a thick lithosphere early in its history to support this topography. Models of lithospheric deflection by topographic loads provide an estimate of the required elastic thickness in the range of 50-100 km. Iapetus' prominent equatorial ridge [Porco, C.C., and 34 colleagues, 2005. Science 307, 1237-1242] reaches widths of 70 km and heights of up to 13 km from their base within the modeled area. The morphology of the ridge suggests an endogenous origin rather than a formation by collisional accretion of a ring remnant [Ip, W.-H., 2006. Geophys. Res. Lett. 33, doi:10.1029/2005GL025386. L16203]. The transition from simple to complex central peak craters on Iapetus occurs at diameters of 11±3 km. The central peaks have pronounced conical shapes with flanking slopes of typically 11° and heights that can rise above the surrounding plains. Crater depths seem to be systematically lower on Iapetus than on similarly sized Rhea, which if true, may be related to more pronounced crater-wall slumping (which widens the craters) on Iapetus than on Rhea. There are seven large impact basins with complex morphologies including central peak massifs and terraced walls, the largest one reaches 800 km in diameter and has rim topography of up to 10 km. Generally, no rings are observed with the basins consistent with a thick lithosphere but still thin enough to allow for viscous relaxation of the basin floors, which is inferred from crater depth-to-diameter measurements. In particular, a 400-km basin shows up-domed floor topography which is suggestive of viscous relaxation. A model of complex crater formation with a viscoplastic (Bingham) rheology [Melosh, H.J., 1989. Impact Cratering. Oxford Univ. Press, New York] of the impact-shocked icy material provides an estimate of the effective cohesion/viscosity at . The local distribution of bright and dark material on the surface of Iapetus is largely controlled by topography and consistent with the dark material being a sublimation lag deposit originating from a bright icy substrate mixed with the dark components, but frost deposits are possible as well.  相似文献   
179.
Polarimetric reflectance measurements have been made at a wavelength of for a suite of predominantly lunar regolith simulants in support of development efforts for the BepiColombo Laser Altimeter (BELA). Measurements were made using an instrument at the University of Bern, Switzerland, that has been modified to accommodate photometric characterizations of laboratory samples down to 0° phase angle (g) with linearly polarized illumination and a linearly polarized receiver. The data reveal opposition surges that are dominated by polarization state-conserving reflectance terms for all samples. Relative strengths of the trans-state reflectance terms are lowest for the darkest samples, suggesting that multiple scattering is responsible for state conversions. Normal albedo measurements of the lunar simulants range from 0.13 to 0.22 at zero illumination angle (i=0°). The total reflectance of the regolith simulants at g=0° were found to decrease with increasing i, which is inconsistent with predictions of reflectance models for Mercury. However, the g=0° reflectance remains higher at i>0° than would be expected for a gray Lambert surface that is scaled to the g=i=0° reflectance value. Polarization ratios for reflectance under polarized illumination but unconstrained emission show that the samples scatter light in the in-plane polarization state more efficiently than in the transverse state at g=0° and i>0°. The opposite is true for g>0° polarization ratios, which indicate that transverse polarized illumination scatters more efficiently at high g. The polarization effect appears to correlate with the sample's characteristic grain size, but the statistical basis of this trend is weak. The implications of these measurements upon the performance of the BELA instrument are discussed.  相似文献   
180.
Every three years the IAU Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the poles of rotation and the prime meridians of the planets, satellites, minor planets, and comets. This report takes into account the IAU Working Group for Planetary System Nomenclature (WGPSN) and the IAU Committee on Small Body Nomenclature (CSBN) definition of dwarf planets, introduces improved values for the pole and rotation rate of Mercury, returns the rotation rate of Jupiter to a previous value, introduces improved values for the rotation of five satellites of Saturn, and adds the equatorial radius of the Sun for comparison. It also adds or updates size and shape information for the Earth, Mars?? satellites Deimos and Phobos, the four Galilean satellites of Jupiter, and 22 satellites of Saturn. Pole, rotation, and size information has been added for the asteroids (21) Lutetia, (511) Davida, and (2867) ?teins. Pole and rotation information has been added for (2) Pallas and (21) Lutetia. Pole and rotation and mean radius information has been added for (1) Ceres. Pole information has been updated for (4) Vesta. The high precision realization for the pole and rotation rate of the Moon is updated. Alternative orientation models for Mars, Jupiter, and Saturn are noted. The Working Group also reaffirms that once an observable feature at a defined longitude is chosen, a longitude definition origin should not change except under unusual circumstances. It is also noted that alternative coordinate systems may exist for various (e.g. dynamical) purposes, but specific cartographic coordinate system information continues to be recommended for each body. The Working Group elaborates on its purpose, and also announces its plans to occasionally provide limited updates to its recommendations via its website, in order to address community needs for some updates more often than every 3 years. Brief recommendations are also made to the general planetary community regarding the need for controlled products, and improved or consensus rotation models for Mars, Jupiter, and Saturn.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号