首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6898篇
  免费   234篇
  国内免费   76篇
测绘学   182篇
大气科学   561篇
地球物理   1625篇
地质学   2532篇
海洋学   517篇
天文学   1175篇
综合类   29篇
自然地理   587篇
  2022年   36篇
  2021年   90篇
  2020年   89篇
  2019年   110篇
  2018年   197篇
  2017年   185篇
  2016年   203篇
  2015年   166篇
  2014年   237篇
  2013年   356篇
  2012年   264篇
  2011年   371篇
  2010年   283篇
  2009年   350篇
  2008年   303篇
  2007年   262篇
  2006年   236篇
  2005年   241篇
  2004年   229篇
  2003年   201篇
  2002年   220篇
  2001年   119篇
  2000年   141篇
  1999年   129篇
  1998年   125篇
  1997年   116篇
  1996年   108篇
  1995年   94篇
  1994年   85篇
  1993年   93篇
  1992年   64篇
  1991年   60篇
  1990年   61篇
  1989年   55篇
  1988年   61篇
  1987年   84篇
  1986年   69篇
  1985年   83篇
  1984年   97篇
  1983年   79篇
  1982年   93篇
  1981年   69篇
  1980年   76篇
  1979年   68篇
  1978年   62篇
  1977年   56篇
  1976年   51篇
  1975年   58篇
  1974年   52篇
  1973年   50篇
排序方式: 共有7208条查询结果,搜索用时 0 毫秒
111.
Atoms which escape Titan's atmosphere are unlikely to possess escape velocity from Saturn, and can orbit the planet until lost by ionization or collision with Titan. It is predicted that a toroidal ring of between ~1 and ~103 atoms or molecules cm?3 exists around Saturn at a distance of about 10 times the radius of the visible rings. This torus may be detectable from Earth-orbit and detection of nondetection of it may provide some information about the presence or absence of a Saturnian magnetic field, and the exospheric temperature and atmospheric escape rate of Titan. It is estimated that, if Titan has a large exosphere, ~97% or more of the escaping atoms can be recaptured by Titan, thereby decreasing the effective net atmospheric loss rate by up to two orders of magnitude. With such a reduction in atmospheric loss rates, it becomes more plausible to suggest that satellites previously thought too small to retain an atmosphere may have one. It is suggested that Saturn be examined by Lyman-α and other observations to search for the gaseous torus of Titan. If successful, these could then be extended to other satellites.The effect of a hypothetical Saturnian magnetosphere on the atmosphere of Titan is investigated. It is shown that, if Saturn has a magnetic field comparable to Jupiter's (~10 G at the planetary surface), the magnetospheric plasma can supply Titan with hydrogen at a rate comparable to the loss rates in some of the models of Trafton (1972) and Sagan (1973). A major part of the Saturnian ionospheric escape flux (~ 1027 photoelectrons sec?1) could perhaps be captured by Titan. At the upper limit, this rate of hydrogen input to the satellite could total ~0.1 atm pressure over the lifetime of the solar system, an amount comparable to estimates of the present atmospheric pressure of Titan.  相似文献   
112.
Several of the icy satellites of Saturn show the spectroscopic signature of the asymmetric stretching mode of C-O in carbon dioxide (CO2) at or near the nominal solid-phase laboratory wavelength of 4.2675 μm (2343.3 cm−1), discovered with the Visible-Infrared Mapping Spectrometer (VIMS) on the Cassini spacecraft. We report here on an analysis of the variation in wavelength and width of the CO2 absorption band in the spectra of Phoebe, Iapetus, Hyperion, and Dione. Comparisons are made to laboratory spectra of pure CO2, CO2 clathrates, ternary mixtures of CO2 with other volatiles, implanted and adsorbed CO2 in non-volatile materials, and ab initio theoretical calculations of CO2 * nH2O. At the wavelength resolution of VIMS, the CO2 on Phoebe is indistinguishable from pure CO2 ice (each molecule’s nearby neighbors are also CO2) or type II clathrate of CO2 in H2O. In contrast, the CO2 band on Iapetus, Hyperion, and Dione is shifted to shorter wavelengths (typically ∼4.255 μm (∼2350.2 cm−1)) and broadened. These wavelengths are characteristic of complexes of CO2 with different near-neighbor molecules that are encountered in other volatile mixtures such as with H2O and CH3OH, and non-volatile host materials like silicates, some clays, and zeolites. We suggest that Phoebe’s CO2 is native to the body as part of the initial inventory of condensates and now exposed on the surface, while CO2 on the other three satellites results at least in part from particle or UV irradiation of native H2O plus a source of C, implantation or accretion from external sources, or redistribution of native CO2 from the interior.The analysis presented here depends on an accurate VIMS wavelength scale. In preparation for this work, the baseline wavelength calibration for the Cassini VIMS was found to be distorted around 4.3 μm, apparently as a consequence of telluric CO2 gas absorption in the pre-launch calibration. The effect can be reproduced by convolving a sequence of model detector response profiles with a deep atmospheric CO2 absorption profile, producing distorted detector profile shapes and shifted central positions. In a laboratory blackbody spectrum used for radiance calibration, close examination of the CO2 absorption profile shows a similar deviation from that expected from a model. These modeled effects appear to be sufficient to explain the distortion in the existing wavelength calibration now in use. A modification to the wavelength calibration for 13 adjacent bands is provided. The affected channels span about 0.2 μm centered on 4.28 μm. The maximum wavelength change is about 10 nm toward longer wavelength. This adjustment has implications for interpretation of some of the spectral features observed in the affected wavelength interval, such as from CO2, as discussed in this paper.  相似文献   
113.
Abstract– We report on the microstructure, crystallography, chemistry, and isotopic compositions of seven SiC X grains and two mainstream grains from the Murchison meteorite. TEM crystallographic analysis revealed that the X grains (approximately 3 μm) are composed of many small crystals (24–457 nm), while the similarly sized mainstream grains are composed of only a few crystals (0.5–1.7 μm). The difference in crystal size likely results from differences in their formation environments: the X grain crystals evidently formed under conditions of greater supersaturation and rapid growth compared to their mainstream counterparts. However, the same polytypes are observed in both mainstream and X grains. Six X grains and both mainstream grains are entirely the 3C‐SiC polytype and one X grain is an intergrowth of the 3C‐SiC and 2H‐SiC polytypes. EDXS measurements indicate relatively high Mg content in the X grains (≲5 atomic%), while Mg was undetectable in the mainstream grains. The high Mg content is probably from the decay of 26Al into 26Mg. Estimates of the 26Al/27Al ratios, which range from 0.44–0.67, were made from elemental Mg/Al ratios. This range is consistent with the 26Al/27Al ratios inferred from previous isotopic measurements of X grains. We also report the first direct observations of subgrains in X grains, including the first silicides [(Fe,Ni)nSim]. Diffraction data do not match any previously observed presolar phases, but are a good fit to silicides, which are predicted stable SN condensates. Eight subgrains with highly variable Ni/Fe ratios (0.12–1.60) were observed in two X grains.  相似文献   
114.
New Hugoniot and release adiabate data for 1.8 g cm?3 lunar fines (sample, 70051) in the ç2 to ç70 kbar range demonstrate that upon shock compression intrinsic crystal density (ç3.1 g cm?3) is achieved undershock stresses of 15 to 20 kbar. Release adiabate determinations indicate that measurable irreversible compaction occurs upon achieving shock pressures above ç4 kbar. For shocks in the ç7 to 15 kbar range, the inferred,post-shock, specific volumes observed decrease nearly linearly with increasing peak shock pressures. Upon shocking to ç15 kbar the post-shock density is approximately that of the intrinsic minerals. If the present data for sample 70051 are taken to be representative of the response to impact of unconsolidated regolith material on the Moon, it is inferred that the formation of appreciable quantities of soil breccia can be associated with the impact of meteoroids or ejecta at speeds of as low as ç1 km s?1.  相似文献   
115.
The influence of temperature changes in circumstellar silicate-like envelopes upon the polarization effects is investigated. It is shown that under the assumption that ΔT g>50° and conductivity of silicate grains is indirectly proportional toT g this mechanism can be responsible for the observed dependence of intensity vs polarization in some late-type stars, e.g. V CVn. The same effects can be produced by dirty ices and graphite grains. It is suggested that irradiation by electrons and/or protons can affect the circumstellar envelopes in a similar way, especially those of early-type stars, and irradiation by neutrons can exert an influence on the envelopes of supernovae.  相似文献   
116.
In the past few years considerable attention has been given to the determination of likely compounds that could account for the various colors observed in the outer solar system: and to possible formation mechanisms for these compounds. Many experiments have been done using electrical discharges (Chadha, M. S., et al., 1971, Icarus15, 39) and ultraviolet light (Khare, B. N., and Sagan, C., 1973, Icarus20, 311) on mixtures of CH4, NH3, and H2S, which are most likely the dominant minor constituents of the atmospheres of Jupiter, Saturn, Titan, and possibly the other satellites early in their histories. Colored polymers, usually brownish-red, have been produced in these experiments. With the passage of Pioneer 10 around Jupiter, there is another source of energy worthy of consideration, energetic protons (and electrons). Preliminary experiments to investigate the formation of colored polymers and other interesting molecules by the irradiation of gas mixtures by protons are discussed. Two to four Mev protons were used, with corresponding beam fluxes (as measured at 6RJ from the planet) equivalent to approximately 80 Earth years at Jupiter per hour of exposure. As in the other types of experiments, colored polymers have been produced. An important feature of this work is the presence or absence of absorption at 5 μm in the different materials produced; Titan is quite dark at this wavelength and Io is fairly bright. Such features may provide criteria for accepting or rejecting various materials produced in these experiments as reasonable coloring agents for the outer solar system.  相似文献   
117.
Mineral-specific IR absorption coefficients were calculated for natural and synthetic olivine, SiO2 polymorphs, and GeO2 with specific isolated OH point defects using quantitative data from independent techniques such as proton–proton scattering, confocal Raman spectroscopy, and secondary ion mass spectrometry. Moreover, we present a routine to detect OH traces in anisotropic minerals using Raman spectroscopy combined with the “Comparator Technique”. In case of olivine and the SiO2 system, it turns out that the magnitude of ε for one structure is independent of the type of OH point defect and therewith the peak position (quartz ε = 89,000 ± 15,000 textl textmoltextH2textO-1 textcm-2text{l},text{mol}_{{text{H}_2}text{O}}^{-1},text{cm}^{-2}), but it varies as a function of structure (coesite ε = 214,000 ± 14,000 textl textmoltextH2textO-1 textcm-2text{l},text{mol}_{{text{H}_2}text{O}}^{-1},text{cm}^{-2}; stishovite ε = 485,000 ± 109,000 textl textmoltextH2textO-1 textcm-2text{l},text{mol}_{{text{H}_2}text{O}}^{-1},text{cm}^{-2}). Evaluation of data from this study confirms that not using mineral-specific IR calibrations for the OH quantification in nominally anhydrous minerals leads to inaccurate estimations of OH concentrations, which constitute the basis for modeling the Earth’s deep water cycle.  相似文献   
118.
We present SWS grating scans of pure H2 rotational lines, as well as several infrared fine-structure lines for two embedded Young Stellar Objects, S106 IR and Cep A East. Excitation temperatures and masses were derived from the low-lying pure rotational levels of H2 and are 490 and 740 K and 0.04 and 0.007 M⊙ for S106 and Cep A, respectively. The observations were compared to theoretical models for PDRs and dissociative and non-dissociative shocks. The infrared spectrum of S106 IR is dominated by PDR emission while that of Cep A East has a large shock component. We suggest that the difference between these two objects could reflect an evolutionary trend. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
119.
A phenomenological model of the interplay between the polar magnetic fields of the Sun and the solar sector structure is discussed. Current sheets separate regions of opposite polarity and mark the sector boundaries in the corona. The sheets are visible as helmet streamers. The solar sector boundary is tilted with respect to central meridian, and boundaries with opposite polarity change are oppositely tilted. The tilt of a given type of boundary [(+, ?) or (?, +)] changes systematically during the sunspot cycle as the polarity of the polar fields reverses. Similar reversals of the position of the streamers at the limbs takes place. If we consider (a) a sunspot cycle where the northern polar field is inward (?) during the early part of the cycle and (b) a (+, ?) sector boundary at central meridian then the model predicts the following pattern; a streamer at high northern latitudes should be observed over the west limb together with a corresponding southern streamer over the east limb. The current sheet runs now NW-SE. At sunspot maximum the boundary is more in the N-S direction; later when the polar fields have completed their reversal the boundary runs NE-SW and the northern streamer should be observed over the east limb and the southern streamer over the west limb. Observational evidence in support of the model is presented, especially the findings of Hansen, Sawyer and Hansen and Koomen and Howard that the K-corona is highly structured and related to the solar sector structure.  相似文献   
120.
The probability that γ-ray bursts may be generated by the infall of comet-like objects on the neutron stars, as recently proposed by Harwit and Salpeter (1973), is reexamined. Although hypothetical cometary clouds around the parent star may survive the supernova outburst virtually untouched, the frequency of γ-outbursts due to the comet impact on the neutron star or white dwarf is only about 10?3 of the observed occurrence. A considerably higher rate of comets passing per year at critical periastron distance must be assumed if the γ-ray outbursts are to be due to the collision of coments with compact stars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号