首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4934篇
  免费   183篇
  国内免费   52篇
测绘学   123篇
大气科学   402篇
地球物理   1122篇
地质学   1822篇
海洋学   358篇
天文学   880篇
综合类   17篇
自然地理   445篇
  2022年   29篇
  2021年   64篇
  2020年   68篇
  2019年   90篇
  2018年   142篇
  2017年   150篇
  2016年   153篇
  2015年   133篇
  2014年   184篇
  2013年   259篇
  2012年   203篇
  2011年   267篇
  2010年   207篇
  2009年   263篇
  2008年   214篇
  2007年   190篇
  2006年   176篇
  2005年   174篇
  2004年   188篇
  2003年   161篇
  2002年   161篇
  2001年   82篇
  2000年   89篇
  1999年   76篇
  1998年   91篇
  1997年   68篇
  1996年   65篇
  1995年   61篇
  1994年   57篇
  1993年   63篇
  1992年   49篇
  1991年   39篇
  1990年   42篇
  1989年   41篇
  1988年   47篇
  1987年   50篇
  1986年   47篇
  1985年   58篇
  1984年   70篇
  1983年   51篇
  1982年   58篇
  1981年   47篇
  1980年   48篇
  1979年   46篇
  1978年   44篇
  1977年   37篇
  1976年   33篇
  1975年   32篇
  1974年   33篇
  1973年   32篇
排序方式: 共有5169条查询结果,搜索用时 15 毫秒
231.
Remotely sensed measurements of sulphur dioxide (SO2) emitted by Turrialba Volcano (Costa Rica) are reported for the period September 2009–January 2011. These measurements were obtained using images from Advanced Spaceborne Thermal Emission and Reflexion radiometer, Ozone Monitoring Instrument and a ground-based UV camera. These three very different instruments provide flux measurements in good agreement with each other, which demonstrate that they can be integrated for monitoring SO2 fluxes. Fluxes from Turrialba increased fourfold in January 2010, following a phreatic explosion that formed a degassing vent in the W crater of Turrialba. Since then, the SO2 flux has remained high (30–50?kg/s) but seems to be showing a slowly decreasing trend. We interpret this evolution as the start of open vent degassing from a recently intruded magma body. The opening of the degassing vent decreased the confining pressure of the magma body and allowed the gases to bypass the hydrothermal system.  相似文献   
232.
The devastating impacts of the widespread flooding and landsliding in Puerto Rico following the September 2017 landfall of Hurricane Maria highlight the increasingly extreme atmospheric disturbances and enhanced hazard potential in mountainous humid-tropical climate zones. Long-standing conceptual models for hydrologically driven hazards in Puerto Rico posit that hillslope soils remain wet throughout the year, and therefore, that antecedent soil wetness imposes a negligible effect on hazard potential. Our post-Maria in situ hillslope hydrologic observations, however, indicate that while some slopes remain wet throughout the year, others exhibit appreciable seasonal and intra-storm subsurface drainage. Therefore, we evaluated the performance of hydro-meteorological (soil wetness and rainfall) versus intensity-duration (rainfall only) hillslope hydrologic response thresholds that identify the onset of positive pore-water pressure, a predisposing factor for widespread slope instability in this region. Our analyses also consider the role of soil-water storage and infiltration rates on runoff generation, which are relevant factors for flooding hazards. We found that the hydro-meteorological thresholds outperformed intensity-duration thresholds for a seasonally wet, coarse-grained soil, although they did not outperform intensity-duration thresholds for a perennially wet, fine-grained soil. These end-member soils types may also produce radically different stormflow responses, with subsurface flow being more common for the coarse-grained soils underlain by intrusive rocks versus infiltration excess and/or saturation excess for the fine-grained soils underlain by volcaniclastic rocks. We conclude that variability in soil-hydraulic properties, as opposed to climate zone, is the dominant factor that controls runoff generation mechanisms and modulates the relative importance of antecedent soil wetness for our hillslope hydrologic response thresholds.  相似文献   
233.
Hyporheic exchange is the interaction of river water and groundwater, and is difficult to predict. One of the largest contributions to predictive uncertainty for hyporheic exchange has been attributed to the representation of heterogeneous subsurface properties. Our study evaluates the trade-offs between intrinsic (irreducible) and epistemic (reducible) model errors when choosing between homogeneous and highly complex subsurface parameter structures. We modeled the Steinlach River Test Site in Southwest Germany using a fully coupled surface water-groundwater model to simulate hyporheic exchange and to assess the predictive errors and uncertainties of transit time distributions. A highly parameterized model was built, treated as a “virtual reality” and used as a reference. We found that if the parameter structure is too simple, it will be limited by intrinsic model errors. By increasing subsurface complexity through the addition of zones or heterogeneity, we can begin to exchange intrinsic for epistemic errors. Thus, the appropriate level of detail to represent the subsurface depends on the acceptable range of intrinsic structural errors for the given modeling objectives and the available site data. We found that a zonated model is capable of reproducing the transit time distributions of a more detailed model, but only if the geological structures are known. An interpolated heterogeneous parameter field (cf. pilot points) showed the best trade-offs between the two errors, indicating fitness for practical applications. Parameter fields generated by multiple-point geostatistics (MPS) produce transit time distributions with the largest uncertainties, however, these are reducible by additional hydrogeological data, particularly flux measurements.  相似文献   
234.
To quantify landscape change resulting from processes of erosion and deposition and to establish spatially distributed sediment budgets, ‘models of change’ can be established from a time series of digital elevation models (DEMs). However, resolution effects and measurement errors in DEMs may propagate to these models. This study aimed to evaluate and to modify remotely‐sensed DEMs for an improved quantification of initial sediment mass changes in an artificially‐created catchment. DEMs were constructed from photogrammetry‐based, airborne (ALS) and ground‐based laser scanning (TLS) data. Regions of differing morphological characteristics and vegetation cover were delineated. Three‐dimensional (3D) models of volume change were established and mass change was derived from these models. DEMs were modified region‐by‐region for rill, interrill and alluvial areas, based on logical and hydro‐geomorphological principles. Additional DEMs were constructed by combining multi‐source, modified data. Models were evaluated by comparison with d‐GPS reference data and by considering sediment budget plausibility. Comprehensive evaluation showed that DEM usability depends on a relation between the technique used to obtain elevation data, surface morphology and vegetation cover characteristics. Photogrammetry‐based DEMs were suited to quantification of change in interrill areas but strongly underestimated surface lowering in erosion rills. TLS DEMs were best suited to rill areas, while ALS DEMs performed best in vegetation‐covered alluvial areas. Agreement with reference data and budget plausibility were improved by modifications to photogrammetry‐ and TLS‐based DEMs. Results suggest that artefacts in DEMs can be reduced and hydro‐geomorphic surface structures can be better represented by applying region‐specific modifications. Photogrammetry‐based DEMs can be improved by combining higher and lower resolution data in defined structural units and applying modifications based on principles given by characteristic hydro‐geomorphic evolution. Results of the critical comparative evaluation of remotely‐sensed elevation data can help to better interpret DEM‐based quantifications of earth‐surface processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
235.
Low‐frequency passive integrated transponders (PIT tags), are commonly used for monitoring pebble mobility in gravel‐bed rivers. Although early studies reported high recovery rates for PIT tags used in small streams, recovery rates in larger systems remain low, substantially limiting the possibilities for their use in such rivers. These low recovery rates are potentially due to missed detections caused by tag signal collision, burial in the sediment layer deeper than the maximum detection range and insufficient (but still exhausting) field effort to cover the concerned areas. A potential solution for addressing these problems is to use active ultra‐high frequency (a‐UHF) transponders as these have a greater detection range and anti‐collision protocols. In order to assess the potential of such transponders for pebble tracking in rivers, we used 433.92 MHz COIN‐ID and COIN‐HC models (ELA Innovation Company, Montpellier, France). We completed several tests to (i) characterize transponder detection ranges in the water and in saturated sediment and (ii) develop field protocols for locating tags by combining global positioning systems (GPS) sites and transponder received signal strength indication (RSSI) levels. The results showed that (i) the maximum detection ranges are about 2.4 m in the water column and more than 2.6 m in a column of saturated gravelly‐sandy sediment, (ii) RSSI spatial interpolation can be used to determine transponder position with good accuracy (< 1 m), (iii) the desired minimal level of accuracy can be adjusted depending on in‐field effort and signal impulse interval, (iv) the RSSI maximal value observed cannot yet be used to determine transponder burial depth because of the multipath propagation of radio frequencies and the semi‐directional emission of the tag signal. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
236.
Surface coal mining has altered land cover, near‐surface geologic structure, and hydrologic processes of large areas in central Appalachia, USA. These alterations are associated with changes in water quality such as elevated total‐dissolved solids, which is usually measured via its surrogate, specific conductance (SC). The SC of valley fill effluent streams is a function of fill construction methods, materials, and age; yet hydrologic studies that relate these variables to water quality are sparse due to the difficulty of conducting traditional hydrologic studies in mined landscapes. We used electrical resistivity imaging (ERI) to visualize the subsurface geologic structure and hydrologic flow paths within a valley fill. ERI is a noninvasive geophysical technique that maps spatiotemporal changes in resistivity of the subsurface. We paired ERI with artificial rainfall experiments to track infiltrated water as it moved through the valley fill. Results indicate that ERI can be used to identify subsurface geologic structure and track advancing wetting fronts or preferential flow paths. Our results suggest that the upper portion of the fill contains significant fines, whereas the deeper profile is primarily large rocks and void spaces. Water tended to pond on the surface of compacted areas until it reached preferential flow paths, where it appeared to infiltrate quickly down to >15 m depth in 75 min. ERI applications can improve understanding of how fill construction techniques influence subsurface water movement, and in turn may aid in the development of valley fill construction methods to reduce water quality effects.  相似文献   
237.
238.
239.
Within the Austurhorn and Vesturhorn silicic intrusions of southeastern Iceland are composite complexes that consist of pillow-like bodies of mafic and intermediate rock entirely surrounded by silicic rock. The pillows with cuspate and chilled boundaries are interpreted to indicate a liquid-liquid relationship with a silicic magma. Some pillow-like bodies have a chilled and sharp cuspate boundary, whereas others have a distinct chemical and visible gradational contact with the silicic rock. The visible scale of mixing is of the same order of magnitude as the size of the pillows enclosed in the silicic rock (mm to meters).Two important types of chemical variation in the pillows are recognized. The first type of variation occurs from mafic pillow interiors to margins and into the surrounding silicic rock. These variations are due to mechanical mixing between mafic magma and the silicic magma. The second type of chemical variation occurs between individual pillows. Large variations occur between pillows in P and Ti at nearly constant silica. These variations cannot have resulted from in situ simple magma mixing or crystal fractionation, and must have originated at depth below the present level of exposure. These compositions could have been derived from separate mafic (or intermediate) magma bodies or from a single zoned and/or stratified magma body. Because the Austurhorn, Vesturhorn, and Ardnamurchan composite complexes all exhibit similar variations in P and Ti and because these occurrences are separated in space and time, they are thought to have had similar processes occur during their evolution. The chemical variations are interpreted to have resulted from mafic magma that has underplated silicic magma and become zoned/stratified due to the effects of magma mixing and cooling-crystallization.  相似文献   
240.
Throughout the aerial radiometric reconnaissance survey portion of the U.S. Department of Energy's National Uranium Resource Evaluation (NURE) program, the identification of outliers (anomalies) was an important approach to locating regions with radio-element concentrations that are either higher or lower than expected. The method introduced herein to locate such regions involves three steps: selection of a high (or low) threshold for the variate of interest; use of the sample percentile to identify all points of interest; and movement of a window over the selected data to locate significant clusters of observations. These steps, applied to aerial radiometric 214Bi (equivalent uranium) data collected over the Copper Mountain area in Wyoming, resulted in the identification of areas enriched in that variate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号