首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4889篇
  免费   210篇
  国内免费   52篇
测绘学   131篇
大气科学   402篇
地球物理   1118篇
地质学   1814篇
海洋学   353篇
天文学   871篇
综合类   17篇
自然地理   445篇
  2022年   29篇
  2021年   63篇
  2020年   67篇
  2019年   91篇
  2018年   142篇
  2017年   149篇
  2016年   152篇
  2015年   133篇
  2014年   185篇
  2013年   261篇
  2012年   204篇
  2011年   266篇
  2010年   209篇
  2009年   264篇
  2008年   213篇
  2007年   189篇
  2006年   177篇
  2005年   175篇
  2004年   184篇
  2003年   161篇
  2002年   161篇
  2001年   81篇
  2000年   89篇
  1999年   73篇
  1998年   91篇
  1997年   69篇
  1996年   65篇
  1995年   61篇
  1994年   55篇
  1993年   63篇
  1992年   46篇
  1991年   39篇
  1990年   40篇
  1989年   41篇
  1988年   47篇
  1987年   50篇
  1986年   47篇
  1985年   57篇
  1984年   67篇
  1983年   51篇
  1982年   57篇
  1981年   47篇
  1980年   48篇
  1979年   46篇
  1978年   44篇
  1977年   37篇
  1976年   32篇
  1975年   32篇
  1974年   33篇
  1973年   32篇
排序方式: 共有5151条查询结果,搜索用时 15 毫秒
121.
The climate of the last glacial maximum (LGM) is simulated with a high-resolution atmospheric general circulation model, the NCAR CCM3 at spectral truncation of T170, corresponding to a grid cell size of roughly 75 km. The purpose of the study is to assess whether there are significant benefits from the higher resolution simulation compared to the lower resolution simulation associated with the role of topography. The LGM simulations were forced with modified CLIMAP sea ice distribution and sea surface temperatures (SST) reduced by 1°C, ice sheet topography, reduced CO2, and 21,000 BP orbital parameters. The high-resolution model captures modern climate reasonably well, in particular the distribution of heavy precipitation in the tropical Pacific. For the ice age case, surface temperature simulated by the high-resolution model agrees better with those of proxy estimates than does the low-resolution model. Despite the fact that tropical SSTs were only 2.1°C less than the control run, there are many lowland tropical land areas 4–6°C colder than present. Comparison of T170 model results with the best constrained proxy temperature estimates (noble gas concentrations in groundwater) now yield no significant differences between model and observations. There are also significant upland temperature changes in the best resolved tropical mountain belt (the Andes). We provisionally attribute this result in part as resulting from decreased lateral mixing between ocean and land in a model with more model grid cells. A longstanding model-data discrepancy therefore appears to be resolved without invoking any unusual model physics. The response of the Asian summer monsoon can also be more clearly linked to local geography in the high-resolution model than in the low-resolution model; this distinction should enable more confident validation of climate proxy data with the high-resolution model. Elsewhere, an inferred salinity increase in the subtropical North Atlantic may have significant implications for ocean circulation changes during the LGM. A large part of the Amazon and Congo Basins are simulated to be substantially drier in the ice age—consistent with many (but not all) paleo data. These results suggest that there are considerable benefits derived from high-resolution model regarding regional climate responses, and that observationalists can now compare their results with models that resolve geography at a resolution comparable to that which the proxy data represent.  相似文献   
122.
A new scientific payload is introduced for fine-scale measurements of meteorological (wind vector, static air temperature, humidity, and air pressure) and microphysical (aerosol particles and cloud droplets) properties, suspended below a tethered balloon. The high resolution sensors and the tethered balloon are described. Measurements in a lifted fog layer from a first field campaign are presented.The detailed investigation of the fog/haze and the temperature inversion layer demonstrates the damping influence of the fog on temperature fluctuations, while thewind fluctuations are significantly decreased by theevolving temperature inversion, whichwas about 30 m above the fog layer.From spectral analysis the noise floors of the high-resolution sensors are determined to10-6 kg m-3 for the LWC (liquid water content) and 4 mK for the fast temperature sensor (UFT-B). The correlation betweentemperature and LWC structures in shallow haze layers is investigated. The release of latent heat and the corresponding warming in the haze of about 0.1 K could be quantified.  相似文献   
123.
Inverse-dispersion calculations can be used to infer atmospheric emission rates through a combination of downwind gas concentrations and dispersion model predictions. With multiple concentration sensors downwind of a compound source (whose component positions are known) it is possible to calculate the component emissions. With this in mind, a field experiment was conducted to examine the feasibility of such multi-source inferences, using four synthetic area sources and eight concentration sensors arranged in different configurations. Multi-source problems tend to be mathematically ill-conditioned, as expressed by the condition number κ. In our most successful configuration (average κ = 4.2) the total emissions from all sources were deduced to within 10% on average, while component emissions were deduced to within 50%. In our least successful configuration (average κ = 91) the total emissions were calculated to within only 50%, and component calculations were highly inaccurate. Our study indicates that the most accurate multi-source inferences will occur if each sensor is influenced by only a single source. A “progressive” layout is the next best: one sensor is positioned to “see” only one source, the next sensor is placed to see the first source and another, a third sensor is placed to see the previous two plus a third, and so on. When it is not possible to isolate any sources κ is large and the accuracy of a multi-source inference is doubtful.  相似文献   
124.
Mountainous regions cover about 27 per cent of the world’s land surface and are home to some 22 per cent of the global population (UNEP 2002). A much greater number of people depend on mountain environments for a wide range of services, including clean water, energy, timber, biodiversity, recreation, and protection from environmental hazards, such as landslides and floods. At the same time, mountain areas are extremely vulnerable ecosystems and under continuous threat of environmental degrad…  相似文献   
125.
Numerical modeling has now become an indispensable tool for investigating the fundamental mechanisms of toxic nonaqueous phase liquid (NAPL) removal from contaminated groundwater systems. Because the domain of a contaminated groundwater system may involve irregular shapes in geometry, it is necessary to use general quadrilateral elements, in which two neighbor sides are no longer perpendicular to each other. This can cause numerical errors on the computational simulation results due to mesh discretization effect. After the dimensionless governing equations of NAPL dissolution problems are briefly described, the propagation theory of the mesh discretization error associated with a NAPL dissolution system is first presented for a rectangular domain and then extended to a trapezoidal domain. This leads to the establishment of the finger‐amplitude growing theory that is associated with both the corner effect that takes place just at the entrance of the flow in a trapezoidal domain and the mesh discretization effect that occurs in the whole NAPL dissolution system of the trapezoidal domain. This theory can be used to make the approximate error estimation of the corresponding computational simulation results. The related theoretical analysis and numerical results have demonstrated the following: (1) both the corner effect and the mesh discretization effect can be quantitatively viewed as a kind of small perturbation, which can grow in unstable NAPL dissolution systems, so that they can have some considerable effects on the computational results of such systems; (2) the proposed finger‐amplitude growing theory associated with the corner effect at the entrance of a trapezoidal domain is useful for correctly explaining why the finger at either the top or bottom boundary grows much faster than that within the interior of the trapezoidal domain; (3) the proposed finger‐amplitude growing theory associated with the mesh discretization error in the NAPL dissolution system of a trapezoidal domain can be used for quantitatively assessing the correctness of computational simulations of NAPL dissolution front instability problems in trapezoidal domains, so that we can ensure that the computational simulation results are controlled by the physics of the NAPL dissolution system, rather than by the numerical artifacts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
126.
Coupled thermo‐hydro‐mechanical‐chemical modelling has attracted attention in past decades due to many contemporary geotechnical engineering applications (e.g., waste disposal, carbon capture and storage). However, molecular‐scale interactions within geomaterials (e.g., swelling and dissolution/precipitation) have a significant influence on the mechanical behaviour, yet are rarely incorporated into existing Thermal‐Hydro‐Mechanical‐Chemical (THMC) frameworks. This paper presents a new coupled hydro‐mechanical‐chemical constitutive model to bridge molecular‐scale interactions with macro‐physical deformation by combining the swelling and dissolution/precipitation through an extension of the new mixture‐coupling theory. Entropy analysis of the geomaterial system provides dissipation energy, and Helmholtz free energy gives the relationship between solids and fluids. Numerical simulation is used to compare with the selected recognized models, which demonstrates that the swelling and dissolution/precipitation processes may have a significant influence on the mechanical deformation of the geomaterials.  相似文献   
127.
128.
We review studies of the Holocene and Late Pleistocene stratigraphy of eastern Iran to infer past changes in the environment within this presently arid region. We build a scenario of widespread, and presumably climatically driven, evolution of the landscape through the Holocene. Six sites, covering a 10° range in latitude, indicate a regional abandonment of alluvial fan surfaces at ~10 ± 3 ka, with the younger (~9 ka) end of this age range supported by several of the best-constrained studies. Incision of rivers into the fan surfaces has occurred in discrete stages in the early to mid-Holocene (~9–7 ka) leading to the formation of flights of river terraces. Detailed records of lakebed deposition in the presently arid interior of Iran are rare, though the available data indicate lake highstand conditions at <7.8 ka at South Golbaf in SE Iran and at < 8.7 ± 1.1 ka at the Nimbluk plain in NE Iran. The major periods of Holocene landscape development hence correlate with a period of time where water was more abundant than at present, with incision of rivers into thick alluvial deposits possibly occurring due to a combination of decreased sediment supply and high levels of precipitation, and with the formation of inset river terraces possibly responding to century-scale fluctuations in precipitation. No major geomorphic changes are identified within the later part of the Holocene, from which we infer that increased aridity has slowed evolution of the landscape. A decrease in precipitation in the mid-Holocene may have had a detrimental effect on bronze age societies in eastern Iran as has been inferred elsewhere in the eastern Mediterranean region. The pre-Holocene environmental changes in eastern Iran are less well constrained, though there are suggestions of alluvial fan abandonment at 40–60 ka, at ~80 ka, and at ~120 ka.  相似文献   
129.
For two decades, the nature of Fe‐rich, oxygen‐bearing, Ru–Os compounds found in the supergene environment has been debated. Ru–Os–Fe‐oxides and nano‐intergrowths of ruthenium with magnetite have been proposed. We applied FE‐SEM, EMPA, μ‐Raman spectroscopy and synchrotron tts‐μXRD to Ru–Os–Fe compounds recovered from Ni‐laterites from the Dominican Republic. The results demonstrate that a significant portion of Fe exists in a common structure with the Ru–Os alloy, that is, ruthenian hexaferrum. This mineral occurs both as nanoparticles and as micrometric patches within a matrix of Fe‐oxide(s). Our data suggest that supergene ruthenian hexaferrum with a (Ru0.4(Os,Ir)0.1Fe0.5)?1.0 stoichiometry represents the most advanced weathering product of primary laurite within Ni‐laterites from the Dominican Republic.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号