首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   358篇
  免费   11篇
  国内免费   1篇
测绘学   5篇
大气科学   24篇
地球物理   97篇
地质学   125篇
海洋学   38篇
天文学   58篇
综合类   1篇
自然地理   22篇
  2021年   4篇
  2020年   10篇
  2019年   7篇
  2018年   7篇
  2017年   9篇
  2016年   13篇
  2015年   7篇
  2014年   8篇
  2013年   25篇
  2012年   15篇
  2011年   28篇
  2010年   17篇
  2009年   30篇
  2008年   30篇
  2007年   19篇
  2006年   31篇
  2005年   17篇
  2004年   21篇
  2003年   10篇
  2002年   6篇
  2001年   7篇
  2000年   9篇
  1999年   2篇
  1998年   4篇
  1997年   5篇
  1996年   4篇
  1995年   3篇
  1994年   5篇
  1993年   1篇
  1992年   3篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1978年   1篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
排序方式: 共有370条查询结果,搜索用时 312 毫秒
41.
The solar system, as we know it today, is about 4.5 billion years old. It is widely believed that it was essentially completed 100 million years after the formation of the Sun, which itself took less than 1 million years, although the exact chronology remains highly uncertain. For instance: which, of the giant planets or the terrestrial planets, formed first, and how? How did they acquire their mass? What was the early evolution of the “primitive solar nebula” (solar nebula for short)? What is its relation with the circumstellar disks that are ubiquitous around young low-mass stars today? Is it possible to define a “time zero” (t 0), the epoch of the formation of the solar system? Is the solar system exceptional or common? This astronomical chapter focuses on the early stages, which determine in large part the subsequent evolution of the proto-solar system. This evolution is logarithmic, being very fast initially, then gradually slowing down. The chapter is thus divided in three parts: (1) The first million years: the stellar era. The dominant phase is the formation of the Sun in a stellar cluster, via accretion of material from a circumstellar disk, itself fed by a progressively vanishing circumstellar envelope. (2) The first 10 million years: the disk era. The dominant phase is the evolution and progressive disappearance of circumstellar disks around evolved young stars; planets will start to form at this stage. Important constraints on the solar nebula and on planet formation are drawn from the most primitive objects in the solar system, i.e., meteorites. (3) The first 100 million years: the “telluric” era. This phase is dominated by terrestrial (rocky) planet formation and differentiation, and the appearance of oceans and atmospheres.  相似文献   
42.
43.
Many poromechanical studies of rocks give little regard to the micropetrographic observation of their constituents. The aim of this study is to show how such a detailed study can help understand and provide more precision on the poromechanical behaviour of the material. The rock studied here is an oolitic limestone. Micropetrography reveals the nature of the constituents (calcite, mostly in the form of fine‐grained micrite), their abundance, their organization (micrite organized in ooids linked by a calcitic cement, small‐sized highly connected isotropic porosity, scarce unconnected porosity) and the structure of the rock (global isotropy, small heterogeneities due to sedimentological phenomena, no microcracks). Micropetrography completes the information obtained by poromechanics in that it allows the observation of elements deduced from macroscopical tests. The aim of this paper is to show the effect of microporosity on permeability and flow in a rock where microporous grains are in contact with each other.  相似文献   
44.
The present field study uses Spongia officinalis for assessing trace metals occurrence in time and space within Mediterranean rocky communities. Nine sites were selected in the Marseille area for studying spatial trends in 12 metal concentrations. Long term changes in 8 metal concentrations were assessed at sites that had been sampled before and 12 years after the opening of a treatment plant. Spongia officinalis highly concentrated all the trace metal surveyed excepted Hg and Cd. The overall contamination level registered provided a classification of the study sites which is congruent with that given by other studies on pollutant accumulation in neighbouring sandy-bottoms or benthic assemblages. Among the metals studied, Fe, Pb, Cr are those that best highlighted a pollution gradient. In the present study, only Cd concentration did not vary in space. Except for Ni, all pollutant concentrations clearly decreased between 1984 and 1999. This very impressive decrease in heavy metal concentrations within the Marseille area represents an indisputable evidence of the improvement of the seawater quality resulting from 12 years' operation of the Marseille sewage plant. Moreover, the significant decrease also recorded in the reference population at Port-Cros might reflect an overall improvement in the seawater quality of the NW Mediterranean.  相似文献   
45.
CSDP core Yaxcopoil-1 was drilled to a depth of 1,511 m within the Chicxulub crater. An organic-rich marly limestone near the base of the hole (1,495 to 1,452 m) was deposited in an open marine shelf environment during the latest Cenomanian (uppermost Rotalipora cushmani zone). The overlying sequence of limestones, dolomites and anhydrites (1,495 to 894 m) indicates deposition in various carbonate platform environments (e.g., sabkhas, lagoons). A 100-m-thick suevite breccia (894–794 m) identifies the Chicxulub impact event. Above the suevite breccia is a dolomitic limestone with planktic foraminiferal assemblages indicative of Plummerita hantkeninoides zone CF1, which spans the last 300 ky of the Maastrichtian. An erosional surface 50 cm above the breccia/dolomite contact marks the K/T boundary and a hiatus. Limestones above this contact contain the first Tertiary planktic foraminifera indicative of an upper P. eugubina zone P1a(2) age. Another hiatus 7 cm upsection separates zone P1a(2) and hemipelagic limestones of planktic foraminiferal Zone P1c. Planktic foraminiferal assemblages of Zone Plc to P3b age are present from a depth of 794.04 up to 775 m. The Cretaceous carbonate sequence appears to be autochthonous, with a stratigraphic sequence comparable to late Cretaceous sediments known from outside the Chicxulub crater in northern and southern Yucatan, including the late Cenomanian organic-rich marly limestone. There is no evidence that these sediments represent crater infill due to megablocks sliding into the crater, such as major disruption of sediments, chaotic changes in lithology, overturned or deep dipping megablocks, major mechanical fragmentation, shock or thermal alteration, or ductile deformation. Breccia units that are intercalated in the carbonate platform sequence are intraformational in origin (e.g., dissolution of evaporites) and dykes are rare. Major disturbances of strata by the impact therefore appear to have been confined to within less than 60 km from the proposed impact center. Yaxcopoil-1 may be located outside the collapsed transient crater cavity, either on the upper end of an elevated and tilted horst of the terrace zone, or even outside the annular crater cavity. The Chicxulub site thus records a large impact that predates the K/T boundary impact and mass extinction.  相似文献   
46.
A trachytic tephra, discovered in the ancient lake of Sarliève, ‘Grande Limagne’, has been dated using the thermoluminescence technique. The obtained age, 16±4 ka (2σ), is older than that of the trachytic volcanoes of the Cha??ne des Puys, the ashes of which have already been locally recognised in the region. Its analysis confirms its originality. In the course of the comparisons made to search for its spring, it appears that the wide-dispersion tephra CF7, beforehand correlated by hypothesis to the Puy de Clierzou, probably originates from the Kilian crater or the Puy de Vasset. To cite this article: D. Miallier et al., C. R. Geoscience 336 (2004).  相似文献   
47.
Mitigating and adapting to global changes requires a better understanding of the response of the Biosphere to these environmental variations. Human disturbances and their effects act in the long term (decades to centuries) and consequently, a similar time frame is needed to fully understand the hydrological and biogeochemical functioning of a natural system. To this end, the ‘Centre National de la Recherche Scientifique’ (CNRS) promotes and certifies long-term monitoring tools called national observation services or ‘Service National d'Observation’ (SNO) in a large range of hydrological and biogeochemical systems (e.g., cryosphere, catchments, aquifers). The SNO investigating peatlands, the SNO ‘Tourbières’, was certified in 2011 ( https://www.sno-tourbieres.cnrs.fr/ ). Peatlands are mostly found in the high latitudes of the northern hemisphere and French peatlands are located in the southern part of this area. Thus, they are located in environmental conditions that will occur in northern peatlands in coming decades or centuries and can be considered as sentinels. The SNO Tourbières is composed of four peatlands: La Guette (lowland central France), Landemarais (lowland oceanic western France), Frasne (upland continental eastern France) and Bernadouze (upland southern France). Thirty target variables are monitored to study the hydrological and biogeochemical functioning of the sites. They are grouped into four datasets: hydrology, fluvial export of organic matter, greenhouse gas fluxes and meteorology/soil physics. The data from all sites follow a common processing chain from the sensors to the public repository. The raw data are stored on an FTP server. After operator or automatic processing, data are stored in a database, from which a web application extracts the data to make them available ( https://data-snot.cnrs.fr/data-access/ ). Each year at least, an archive of each dataset is stored in Zenodo, with a digital object identifier (DOI) attribution ( https://zenodo.org/communities/sno_tourbieres_data/ ).  相似文献   
48.
Pressure–Temperature–time (P–Tt) estimates of the syn‐kinematic strain at the peak‐pressure conditions reached during shallow underthrusting of the Briançonnais Zone in the Alpine subduction zone was made by thermodynamic modelling and 40Ar/39Ar dating in the Plan‐de‐Phasy unit (SE of the Pelvoux Massif, Western Alps). The dated phengite minerals crystallized syn‐kinematically in a shear zone indicating top‐to‐the‐N motion. By combining X‐ray mapping with multi‐equilibrium calculations, we estimate the phengite crystallization conditions at 270 ± 50 °C and 8.1 ± 2 kbar at an age of 45.9 ± 1.1 Ma. Combining this P–Tt estimate with data from the literature allows us to constrain the timing and geometry of Alpine continental subduction. We propose that the Briançonnais units were scalped on top of the slab during ongoing continental subduction and exhumed continuously until collision.  相似文献   
49.
The present study aims at the assessment of six satellite rainfall estimates (SREs) in Pakistan. For each assessed products, both real-time (RT) and post adjusted (Adj) versions are considered to highlight their potential benefits in the rainfall estimation at annual, monthly, and daily temporal scales. Three geomorphological climatic zones, i.e., plain, mountainous, and glacial are taken under considerations for the determination of relative potentials of these SREs over Pakistan at global and regional scales. All SREs, in general, have well captured the annual north-south rainfall decreasing patterns and rainfall amounts over the typical arid regions of the country. Regarding the zonal approach, the performance of all SREs has remained good over mountainous region comparative to arid regions. This poor performance in accurate rainfall estimation of all the six SREs over arid regions has made their use questionable in these regions. Over glacier region, all SREs have highly overestimated the rainfall. One possible cause of this overestimation may be due to the low surface temperature and radiation absorption over snow and ice cover, resulting in their misidentification with rainy clouds as daily false alarm ratio has increased from mountainous to glacial regions. Among RT products, CMORPH-RT is the most biased product. The Bias was almost removed on CMORPH-Adj thanks to the gauge adjustment. On a general way, all Adj versions outperformed their respective RT versions at all considered temporal scales and have confirmed the positive effects of gauge adjustment. CMORPH-Adj and TMPA-Adj have shown the best agreement with in situ data in terms of Bias, RMSE, and CC over the entire study area.  相似文献   
50.
The development of the Alpine mountain belt has been governed by the convergence of the African and European plates since the Late Cretaceous. During the Cenozoic, this orogeny was accompanied with two major kinds of intraplate deformation in the NW-European foreland: (1) the European Cenozoic Rift System (ECRIS), a left-lateral transtensional wrench zone striking NNE-SSW between the western Mediterranean Sea and the Bohemian Massif; (2) long-wavelength lithospheric folds striking NE and located between the Alpine front and the North Sea. The present-day geometry of the European crust comprises the signatures of these two events superimposed on all preceding ones. In order to better define the processes and causes of each event, we identify and separate their respective geometrical signatures on depth maps of the pre-Mesozoic basement and of the Moho. We derive the respective timing of rifting and folding from sedimentary accumulation curves computed for selected locations of the Upper Rhine Graben. From this geometrical and chronological separation, we infer that the ECRIS developed mostly from 37 to 17 Ma, in response to north-directed impingement of Adria into the European plate. Lithospheric folds developed between 17 and 0 Ma, after the azimuth of relative displacement between Adria and Europe turned counter-clockwise to NW–SE. The geometry of these folds (wavelength = 270 km; amplitude = 1,500 m) is consistent with the geometry, as predicted by analogue and numerical models, of buckle folds produced by horizontal shortening of the whole lithosphere. The development of the folds resulted in ca. 1,000 m of rock uplift along the hinge lines of the anticlines (Burgundy–Swabian Jura and Normandy–Vogelsberg) and ca. 500 m of rock subsidence along the hinge line of the intervening syncline (Sologne–Franconian Basin). The grabens of the ECRIS were tilted by the development of the folds, and their rift-related sedimentary infill was reduced on anticlines, while sedimentary accumulation was enhanced in synclines. We interpret the occurrence of Miocene volcanic activity and of topographic highs, and the basement and Moho configurations in the Vosges–Black Forest area and in the Rhenish Massif as interference patterns between linear lithospheric anticlines and linear grabens, rather than as signatures of asthenospheric plumes.
O. BourgeoisEmail:
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号