首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67252篇
  免费   1218篇
  国内免费   447篇
测绘学   1665篇
大气科学   5385篇
地球物理   13896篇
地质学   21781篇
海洋学   5803篇
天文学   15442篇
综合类   142篇
自然地理   4803篇
  2020年   520篇
  2019年   515篇
  2018年   961篇
  2017年   939篇
  2016年   1374篇
  2015年   1030篇
  2014年   1436篇
  2013年   3292篇
  2012年   1516篇
  2011年   2307篇
  2010年   1960篇
  2009年   2950篇
  2008年   2693篇
  2007年   2420篇
  2006年   2479篇
  2005年   2161篇
  2004年   2275篇
  2003年   2089篇
  2002年   1986篇
  2001年   1787篇
  2000年   1763篇
  1999年   1518篇
  1998年   1500篇
  1997年   1488篇
  1996年   1286篇
  1995年   1217篇
  1994年   1099篇
  1993年   1007篇
  1992年   957篇
  1991年   807篇
  1990年   1016篇
  1989年   858篇
  1988年   763篇
  1987年   940篇
  1986年   832篇
  1985年   1041篇
  1984年   1205篇
  1983年   1144篇
  1982年   1032篇
  1981年   995篇
  1980年   853篇
  1979年   835篇
  1978年   890篇
  1977年   807篇
  1976年   758篇
  1975年   702篇
  1974年   709篇
  1973年   719篇
  1972年   452篇
  1971年   397篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
62.
Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat   总被引:11,自引:0,他引:11  
Complete budgets for carbon and oxygen have been constructed for cyanobacterial mats dominated by Microcoleus chthonoplastes from the evaporating ponds of a salt works located in Guerrero Negro, Baja California Sur, Mexico. Included in the budget are measured rates of O2 production, sulfate reduction, and elemental exchange across the mat/brine interface, day and night, at various temperatures and times of the year. We infer from this data the various sinks for O2, as well as the sources of carbon for primary production. To summarize, although seasonal variability exists, a major percentage of the O2 produced during the day did not diffuse out of the mat but was used within the mat to oxidize both organic carbon and the sulfide produced by sulfate reduction. At night, most of the O2 that diffused into the mat was used to oxidize sulfide, with O2 respiration of minor importance. During the day, the internal mat processes of sulfate reduction and O2 respiration generated as much or more inorganic carbon (DIC) for primary production as diffusion into the mat. Also, oxygenic photosynthesis was the most important process of carbon fixation, although anoxygenic photosynthesis may have been important at low light levels during some times of the year. At night, the DIC lost from the mat was mostly from sulfate reduction. Elemental fluxes across the mat/brine interface indicated that carbon with an oxidation state of greater than zero was taken up by the mat during the day and liberated from the mat at night. Overall, carbon with an average oxidation state of near zero accumulated in the mat. Both carbon fixation and carbon oxidation rates varied with temperature by a similar amount. These mats are thus closely coupled systems where rapid rates of photosynthesis both require and fuel rapid rates of heterotrophic carbon oxidation.  相似文献   
63.
The study of climate impacts on Living Marine Resources (LMRs) has increased rapidly in recent years with the availability of climate model simulations contributed to the assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Collaboration between climate and LMR scientists and shared understanding of critical challenges for such applications are essential for developing robust projections of climate impacts on LMRs. This paper assesses present approaches for generating projections of climate impacts on LMRs using IPCC-class climate models, recommends practices that should be followed for these applications, and identifies priority developments that could improve current projections. Understanding of the climate system and its representation within climate models has progressed to a point where many climate model outputs can now be used effectively to make LMR projections. However, uncertainty in climate model projections (particularly biases and inter-model spread at regional to local scales), coarse climate model resolution, and the uncertainty and potential complexity of the mechanisms underlying the response of LMRs to climate limit the robustness and precision of LMR projections. A variety of techniques including the analysis of multi-model ensembles, bias corrections, and statistical and dynamical downscaling can ameliorate some limitations, though the assumptions underlying these approaches and the sensitivity of results to their application must be assessed for each application. Developments in LMR science that could improve current projections of climate impacts on LMRs include improved understanding of the multi-scale mechanisms that link climate and LMRs and better representations of these mechanisms within more holistic LMR models. These developments require a strong baseline of field and laboratory observations including long time series and measurements over the broad range of spatial and temporal scales over which LMRs and climate interact. Priority developments for IPCC-class climate models include improved model accuracy (particularly at regional and local scales), inter-annual to decadal-scale predictions, and the continued development of earth system models capable of simulating the evolution of both the physical climate system and biosphere. Efforts to address these issues should occur in parallel and be informed by the continued application of existing climate and LMR models.  相似文献   
64.
Abstract. The stomach contents of poor cod, Trisopterus minutus capelanus (Lacepède), were taken at monthly intervals off the eastern coast of the Gulf of Valencia (Spain). A total of 1276 were analyzed to determine diet according to fish size and season. The basic food consists of crustaceans (Mysidacea and Decapoda) and teleosts. Feeding habits varied with size: decapods and fishes were more abundant in the stomachs of larger specimens. Little seasonal variation in food habits was recorded.  相似文献   
65.
The magnetometric resistivity (MMR) method uses a sensitive magnetometer to measure the low-level, low-frequency magnetic fields associated with the galvanic current flow between a pair of electrodes. While the MMR anomalies of simple structures such as dikes and vertical contacts have been determined analytically, there is a lack of systematic information on the expected responses from simple three-dimensional bodies. We determine the characteristic anomalies associated with square, plate-like conductors, which are excellent models of many base metal mineral deposits. The anomalies of plates of finite size are determined numerically using an integral equation method. A plate is subdivided into many sections and the current flow within each section is solved by equating the electrical field within each section to the tangential electrical field just outside it. When the plate size is small in relation to either the depth or the transmitter spacing, the shape and amplitude of the anomaly produced is closely approximated by a current dipole model of the same length and depth. At the other extreme, a large plate is represented by a half-plane. The dipole and half-plane models are used to bracket the behaviour of plates of finite size. The form of a plate anomaly is principally dependent on the shape, depth and orientation of the plate. A large, dipping plate near the surface produces a skewed anomaly highly indicative of its dip, but the amount of skew rapidly diminishes with increased depth or decreased size. Changes in plate conductivity affect the amplitude of the anomaly, but have little effect on anomaly shape. A current channelling parameter, determined from the conductivity contrast, can thus be used to scale the amplitude of an anomaly whose basic shape has been determined from geometrical considerations. The separation into geometrical and electrical factors greatly simplifies both the interpretation and modelling of MMR anomalies, particularly in situations with multiple plates. An empirical formula, using this separation, predicts the anomaly of two or more parallel plates with different conductances. In addition, the relation between the resolution of two vertical, parallel plates of equal conductance and their separation is determined. The ability of the integral equation method to model plate-like structures is demonstrated with the interpretation of an MMR anomaly in a survey conducted at Cork Tree Well in Western Australia. The buried conductor, a mineralized graphitic zone, is modelled with a vertical, bent plate. The depth to the top of the plate, and the plate conductance, is adjusted to fit the anomaly amplitude as closely as possible. From the modelling it would appear that this zone is not solely responsible for the observed anomaly.  相似文献   
66.
One of the problems in signal processing is estimating the impulse response function of an unknown system. The well-known Wiener filter theory has been a powerful method in attacking this problem. In comparison, the use of stochastic approximation method as an adaptive signal processor is relatively new. This adaptive scheme can often be described by a recursive equation in which the estimated impulse response parameters are adjusted according to the gradient of a predetermined error function. This paper illustrates by means of simple examples the application of stochastic approximation method as a single-channel adaptive processor. Under some conditions the expected value of its weight sequence converges to the corresponding Wiener optimum filter when the least-mean-square error criterion is used.  相似文献   
67.
68.
Notifications     
  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号