首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   0篇
测绘学   2篇
地球物理   17篇
地质学   16篇
天文学   18篇
  2021年   1篇
  2018年   1篇
  2012年   2篇
  2011年   5篇
  2010年   3篇
  2009年   3篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1963年   1篇
  1956年   1篇
  1955年   2篇
  1954年   1篇
  1952年   1篇
  1951年   1篇
  1950年   1篇
  1949年   1篇
  1948年   3篇
  1939年   1篇
排序方式: 共有53条查询结果,搜索用时 31 毫秒
21.
UBVRI photoelectric and CCD photometry of the slow nova V723 Cas obtained in the years 1995–2003 is presented. The evolution of light curves in 1-year intervals, folded with the orbital period 0.69326 days, shows an increase of the amplitude of the wave-like variations from 0.07 to 1.3 mag during the years 1997–2003. The fact that the shape and amplitude of the orbital light curves does not depend on wavelength is most probably related to the geometry of eclipses combined with the distribution of circumstellar matter in the system.  相似文献   
22.
Ethane spectral lines were observed in emission from Titan in August 1993, October 1995, and September 1996, at a spectral resolution of λ/Δλ≈106, at wavelength 11.7−11.9 μm using the Goddard Infrared Heterodyne Spectrometer at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii. The ethane mole fraction is determined to be (8.8±2.2)×10−6 (68.3% confidence limits, “1σ”), averaging the retrievals from each observing run obtained using the “recommended” thermal profile of R. V. Yelle, D. Strobel, E. Lellouch, and D. Gautier (1997, in Huygens: Science, Payload, and Mission (J.-P. Lebreton, Ed.), pp. 243-256, European Space Agency SP-1177).  相似文献   
23.
Infrared spectroscopy sensitive to thermal emission from Jupiter’s stratosphere reveals effects persisting 23 days after the impact of a body in late July 2009. Measurements obtained on 2009 August 11 UT at the impact latitude of 56°S (planetocentric), using the Goddard Heterodyne Instrument for Planetary Wind and Composition mounted on the NASA Infrared Telescope Facility, reveal increased ethane abundance and the effects of aerosol opacity. An interval of reduced thermal continuum emission at 11.744 μm is measured ∼60-80° towards planetary east of the impact site, estimated to be at 305° longitude (System III). Retrieved stratospheric ethane mole fraction in the near vicinity of the impact site is enhanced by up to ∼60% relative to quiescent regions at this latitude. Thermal continuum emission at the impact site, and somewhat west of it, is significantly enhanced in the same spectra that retrieve enhanced ethane mole fraction. Assuming that the enhanced continuum brightness near the impact site results from thermalized aerosol debris blocking contribution from the continuum formed in the upper troposphere and indicating the local temperature, then continuum emission by a haze layer can be approximated by an opaque surface inserted at the 45-60 mbar pressure level in the stratosphere in an unperturbed thermal profile, setting an upper limit on the pressure and therefore a lower limit on the altitude of the top of the impact debris at this time. The reduced continuum brightness east of the impact site can be modeled by an opaque surface near the cold tropopause, which is consistent with a lower altitude of ejecta/impactor-formed opacity. The physical extent of the observed region of reduced continuum implies a minimum average velocity of 21 m/s transporting material prograde (planetary east) from the impact.  相似文献   
24.
The Kachchh Basin and the Jaisalmer Basin are two neighboring Mesozoic sedimentary basins at the western margin of the Indian craton. The Jurassic succession of the Kachchh Basin is more complete and more fossiliferous than that of the Jaisalmer Basin. Consequently, intrabasinal correlation of the sedimentary units has been possible in the Kachchh Basin, but not in the Jaisalmer Basin. However, some marker beds existing in the Kachchh Basin can be recognized also in the Jaisalmer Basin. Ammonite evidence shows that they are time-equivalent. The following four units form marker intervals in both basins: (1) the pebbly rudstone unit with Isastrea bernardiana and Leptosphinctes of the Kaladongar Formation (Kachchh Basin) and the Isastrea bernardiana-bearing rudstone of the Jaisalmer Formation (Jaisalmer Basin) both represent transgressive systems tract deposits dated as Late Bajocian; (2) bioturbated micrites with anomalodesmatan bivalves within the Goradongar Yellow Flagstone Member (Kachchh Basin) and bioturbated units in the Fort Member (Jaisalmer Basin) represent maximum flooding zone deposits of the Middle to Late Bathonian; (3) trough-crossbedded, sandy pack- to grainstones of the Raimalro Limestone Member (Kachchh Basin) and the basal limestone-sandstone unit of the Kuldhar section of the Jaisalmer Formation (Jaisalmer Basin) correspond to Late Bathonain transgressive systems tract deposits; and (4) ferruginous ooid-bearing carbonates with hardgrounds of the Dhosa Oolite member (Kachchh Basin) and the middle part of the Jajiya Member (Jaisalmer Basin) are Oxfordian transgressive systems tract deposits. The fact that in both basins similar biofacies prevailed during certain time intervals demonstrates a common control of their depositional history. As the two basins represent different tectonic settings, the most likely controlling factors were the relative sea-level changes produced by eustatic processes, a common subsidence history of the northwestern margin of the Indian craton, and the paleoclimate.  相似文献   
25.
26.
27.
We have obtained low noise (S/N > 103), high spectral resolution (/ 10 6) observations of two pure rotation transitions of OH from the solar photosphere. The observations were obtained using the technique of optically null-balanced infrared heterodyne spectroscopy, and consist of center-to-limb line profiles of a = 1 and a = 0 transition near 12 m. These lines should be formed in local thermodynamic equilibrium (LTE), and are diagnostics of the thermal structure of the upper photosphere. We find that the = 0R22(24.5)e line strengthens at the solar limb, in contradiction to the predictions of current one-dimensional photospheric models. Our data for this line support a two-dimensional model in which horizontal thermal fluctuations of order ±800 K occur in the region 5000 10–3–10–2. This thermal bifurcation may be maintained by the presence of magnetic flux tubes, and may be related to the solar limb extensions observed in the 30–200 m region.Observations of the = 1R11(29.5)f line, at 885.643 cm–1, show that it is anomalously weak in the photospheric spectrum. We argue that the source function in the core of this line has been substantially increased by interaction with the 9j-7i transition of Mgi at 885.524 cm–1, which is itself too weak to appear in the disk center spectrum.Visiting Astronomer, Kitt Peak National Observatory, which is operated by the Association of Universities for Research in Astronomy, under contract with the National Science Foundation.  相似文献   
28.
29.
Simulations of the surface temperature and atmospheric humidity with a modern Mars climate model (MCD) and with Phoenix data are used to study the conditions for a liquefaction of brines as a function of latitude and season. The results show that, in the presence of appropriate salts, liquid cryobrines can in course of the diurnal cycle temporarily evolve at high latitudes on Mars’ current climate. The conditions for the liquefaction of “Mars-relevant” cryobrines and time and duration of their stability during the diurnal cycle are calculated for northern spring and for the Phoenix landing site.  相似文献   
30.
The Cassini Huygens mission provides a unique opportunity to combine ground-based and spacecraft investigations to increase our understanding of chemical and dynamical processes in Titan’s atmosphere. Spectroscopic measurements from both vantage points enable retrieving global wind structure, temperature structure, and atmospheric composition. An updated analysis of Titan data obtained with the NASA Goddard Space Flight Center’s Infrared Heterodyne Spectrometer (IRHS) and Heterodyne Instrument for Planetary Wind and Composition (HIPWAC) prior to and during the Cassini Huygens mission is compared to retrievals from measurements with the Cassini Composite Infrared Spectrometer (CIRS). IRHS/HIPWAC results include the first direct stratospheric wind measurements on Titan, constraints on stratospheric temperature, and the study of atmospheric molecular composition. These results are compared to CIRS retrievals of wind and temperature profile from thermal mapping data and ethane abundance at 10-15° South latitude, near the equatorial region. IRHS/HIPWAC wind results are combined with other direct techniques, stellar occultation measurements, and CIRS results to explore seasonal variability over nearly one Titan year and to provide an empirical altitude profile of stratospheric winds, varying from ∼50 to 210 m/s prograde. The advantage of fully resolved line spectra in species abundance measurements is illustrated by comparing the possible effect on retrieved ethane abundance by blended spectral features of other molecular constituents, e.g., acetylene (C2H2), ethylene (C2H4), allene (C3H4), and propane (C3H8), which overlap the ν9 band of ethane, and are not resolved at lower spectral resolution. IR heterodyne spectral resolution can discriminate weak spectral features that overlap the ν9 band of ethane, enabling ethane lines alone to be used to retrieve abundance. Titan’s stratospheric mean ethane mole fraction (8.6±3 ppmv) retrieved from IRHS/HIPWAC emission line profiles (resolving power λλ∼106) is compared to past values obtained from lower resolution spectra and from CIRS measurements (resolving power λλ∼2×103) and more compatible recent analysis. Results illustrate how high spectral resolution ground-based studies complement the spectral and spatial coverage and resolution of moderate spectral resolution space-borne spectrometers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号