首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   464篇
  免费   15篇
  国内免费   7篇
测绘学   6篇
大气科学   42篇
地球物理   85篇
地质学   113篇
海洋学   132篇
天文学   76篇
综合类   5篇
自然地理   27篇
  2021年   2篇
  2020年   5篇
  2019年   8篇
  2018年   7篇
  2017年   16篇
  2016年   24篇
  2015年   10篇
  2014年   16篇
  2013年   25篇
  2012年   10篇
  2011年   15篇
  2010年   14篇
  2009年   22篇
  2008年   22篇
  2007年   26篇
  2006年   21篇
  2005年   24篇
  2004年   25篇
  2003年   19篇
  2002年   13篇
  2001年   13篇
  2000年   14篇
  1999年   15篇
  1998年   16篇
  1997年   10篇
  1996年   11篇
  1995年   9篇
  1994年   7篇
  1993年   3篇
  1992年   3篇
  1991年   9篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1983年   10篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   3篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有486条查询结果,搜索用时 15 毫秒
61.
Watanabe  T. 《Solar physics》1987,113(1-2):107-120
Solar Physics - Plasma motions at the initial phases of flares observed in the high resolution soft X-ray spectrometers are summarized. Blue-shifted components of highly ionized metal ions suggest...  相似文献   
62.
In this study, we constructed a perturbed physics ensemble (PPE) for the MIROC5 coupled atmosphere–ocean general circulation model (CGCM) to investigate the parametric uncertainty of climate sensitivity (CS). Previous studies of PPEs have mainly used the atmosphere-slab ocean models. A few PPE studies using a CGCM applied flux corrections, because perturbations in parameters can lead to large radiation imbalances at the top of the atmosphere and climate drifts. We developed a method to prevent climate drifts in PPE experiments using the MIROC5 CGCM without flux corrections. We simultaneously swept 10 parameters in atmosphere and surface schemes. The range of CS (estimated from our 35 ensemble members) was not wide (2.2–3.2?°C). The shortwave cloud feedback related to changes in middle-level cloud albedo dominated the variations in the total feedback. We found three performance metrics for the present climate simulations of middle-level cloud albedo, precipitation, and ENSO amplitude that systematically relate to the variations in shortwave cloud feedback in this PPE.  相似文献   
63.
In association with the large solar flare of April 15, 2001, the Chacaltaya neutron monitor observed a 3.6σ enhancement of the counting rate between 13:51 and 14:15 UT. Since the enhancement was observed beginning 11 min before the GLE, solar neutrons must be involved in this enhancement. The integral energy spectrum of solar neutrons can be expressed by a simple power law in energy with the index γ=-3.0±1.0. On the other hand, an integral energy spectrum of solar protons has been obtained in the energy range between 650 MeV and 12 GeV. The spectrum can also be expressed by a power law with the power index γ=-2.75±0.15. The flux of solar protons observed at Chacaltaya (at 12 GeV) was already one order less than the flux of the galactic cosmic rays. It may be the first simultaneous observation of the energy spectra of both high-energy protons and neutrons. Comparing the Yohkoh soft X-ray telescope images with the observed particle time profiles, an interesting picture of the particle acceleration mechanism has been deduced.  相似文献   
64.

The temperature distribution at depth is a key variable when assessing the potential of a supercritical geothermal resource as well as a conventional geothermal resource. Data-driven estimation by a machine-learning approach is a promising way to estimate temperature distributions at depth in geothermal fields. In this study, we developed two methodologies—one based on Bayesian estimation and the other on neural networks—to estimate temperature distributions in geothermal fields. These methodologies can be used to supplement existing temperature logs, by estimating temperature distributions in unexplored regions of the subsurface, based on electrical resistivity data, observed geological/mineralogical boundaries, and microseismic observations. We evaluated the accuracy and characteristics of these methodologies using a numerical model of the Kakkonda geothermal field, Japan, where a temperature above 500 °C was observed below a depth of about 3.7 km. When using geological and geophysical knowledge as prior information for the machine learning methods, the results demonstrate that the approaches can provide subsurface temperature estimates that are consistent with the temperature distribution given by the numerical model. Using a numerical model as a benchmark helps to understand the characteristics of the machine learning approaches and may help to identify ways of improving these methods.

  相似文献   
65.
The spontaneous growth of a dynamic in-plane shear crack is simulated using a newly developed method of analysis in which no a priori constraint is required for the crack tip path, unlike in other classical studies. We formulate the problem in terms of boundary integral equations; the hypersingularities of the integration kernels are removed by taking the finite parts. Our analysis shows that dynamic crack growth is spontaneously arrested soon after the bending of the crack tips, even in a uniformly stressed medium with homogeneously distributed fracture strengths. This shows that the dynamics of crack growth has a significant effect on forming the non-planar crack shape, and consequently plays an essential role in the arrest of earthquake rupturing.  相似文献   
66.
Laboratory measurements of ultrasonic wave propagation in tuffaceous sandstone (Kimachi, Japan) and granite (Iidate, Japan) were performed during increasing fracturing of the samples. The fracturing was achieved by unconfined uniaxial compression up to and beyond the point of macrofracture of the specimen using a constant low strain rate. The observed variation of wave velocity (up to 40 per cent) due to the development of micro- and macrofractures in the rock is interpreted by rock models relating velocity changes to damage and crack density. The calculated density of the newly formed cracks reaches higher values for the sandstone than for the granite. Using the estimated crack densities, the attenuation behaviour is interpreted in terms of different attenuation mechanisms; that is, friction and scattering. Rayleigh scattering as described by the model of Hudson (1981 ) may explain the attenuation qualitatively if the largest plausible crack dimensions are assumed in modelling.  相似文献   
67.
68.
Seawater samples were collected in the North Pacific along 175°E during a cruise of the Northwest Pacific Carbon Cycle Study (NOPACCS) program in 1994. Many properties related to the carbonate system were analyzed. By using well-known ratios to correct for chemical changes in seawater, the CO2 concentration at a given depth was back calculated to its initial concentration at the time when the water left the surface in winter. We estimated sea-surface CO2 and titration alkalinity (TA) in present-day winter, from which we evaluated the degree of air-sea CO2 disequilibrium in winter was. Using a correction factor for air-sea CO2 disequilibrium in winter, we reconstructed sea-surface CO2 in pre-industrial times. The difference between the back-calculated initial CO2 and sea-surface CO2 in pre-industrial times should correspond to anthropgenic CO2 input. Although the mixing of different water masses may cause systematic error in the calculation, we found that the nonlinear effect induced by the mixing of different water masses was negligible in the upper layer of the North Pacific subtropical gyre along 175°E. The results of our improved method of assessing the distribution of anthropogenic CO2 in that region show marked differences from those obtained using the previous back-calculation method.  相似文献   
69.
Using the outputs of projections under the highest emission scenario of the representative concentration pathways performed by Earth system models (ESMs), we evaluate the ocean acidification rates of subsurface layers of the western North Pacific, where the strongest sink of atmospheric CO2 is found in the mid-latitudes. The low potential vorticity water mass called the North Pacific Subtropical Mode Water (STMW) shows large dissolved inorganic carbon (DIC) concentration increase, and is advected southwestward, so that, in the sea to the south of Japan, DIC concentration increases and ocean acidification occurs faster than in adjacent regions. In the STMW of the Izu-Ogasawara region, the ocean acidification occurs with a pH decrease of ~0.004 year?1 , a much higher rate than the previously estimated global average (0.0023 year?1), so that the pH decreases by 0.3–0.4 during the twenty-first century and the saturation state of calcite (ΩCa) decreases from ~4.8 down to ~2.4. We find that the ESMs with a deeper mixed layer in the Kuroshio Extension region show a larger increase in DIC concentration within the Izu-Ogasawara region and within the Ryukyu Islands region. Comparing model results with the mixed layer depth obtained from the Argo dataset, we estimate that DIC concentration at a depth of ~200 m increases by 1.4–1.6 μmol kg?1 year?1 in the Izu-Ogasawara region and by 1.1–1.4 μmol kg?1 year?1 in the Ryukyu Islands region toward the end of this century.  相似文献   
70.
Phytoplankton primary production and its regulation by light and nutrient availability were investigated in the shallow, tropical coastal waters of Bandon Bay, Southern Thailand. The bay was meso‐eutrophicated and highly turbid, receiving river water discharge. Water column stratification was consistently weak during both rainy and dry seasons. Dissolved inorganic nitrogen (DIN) was higher off the river mouth than in the other regions, suggesting that river water discharge was a main source of DIN. By contrast, dissolved inorganic phosphorus (DIP) showed a significant negative correlation with total water depth, implying that regeneration around the sea floor was an important source of DIP. Surface DIN and DIP showed positive correlations with surface primary production (PP) and water column primary productivity (ΣPP*), respectively. The combined correlation and model analyses indicate that total water depth had an ambivalent influence on water column primary production (ΣPP); shallower water depth induced more active regeneration of nutrients, but it also caused higher turbidity and lower light availability as a result of enhanced resuspension of sediments. Furthermore, there was a vertical constraint for phytoplankton during the rainy season: total water depth tended to be shallower than euphotic zone depth. In conclusion, light limitation and vertical constraint owing to shallow water depth appear to be more important than nutrient limitation for water column primary production in Bandon Bay.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号