首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   328篇
  免费   17篇
  国内免费   1篇
测绘学   5篇
大气科学   5篇
地球物理   116篇
地质学   175篇
海洋学   18篇
天文学   19篇
综合类   2篇
自然地理   6篇
  2024年   2篇
  2023年   2篇
  2022年   8篇
  2021年   7篇
  2020年   4篇
  2019年   5篇
  2018年   28篇
  2017年   22篇
  2016年   32篇
  2015年   17篇
  2014年   35篇
  2013年   29篇
  2012年   22篇
  2011年   29篇
  2010年   27篇
  2009年   24篇
  2008年   11篇
  2007年   7篇
  2006年   9篇
  2005年   2篇
  2004年   3篇
  2003年   5篇
  2002年   3篇
  2001年   4篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1984年   1篇
排序方式: 共有346条查询结果,搜索用时 15 毫秒
281.
Sediments of Lake Van, Turkey, preserve one of the most complete records of continental climate change in the Near East since the Middle Pleistocene. We used seismic reflection profiles to infer past changes in lake level and discuss potential causes related to changes in climate, volcanism, and regional tectonics since the formation of the lake ca. 600 ka ago. Lake Van’s water level ranged by as much as 600 m during the past ~600 ka. Five major lowstands occurred, at ~600, ~365–340, ~290–230, ~150–130 and ~30–14 ka. During Stage A, between about 600 and 230 ka, lake level changed dramatically, by hundreds of meters, but phases of low and high stands were separated by long time intervals. Changes in the lake level were more frequent during the past ~230 ka, but less dramatic, on the order of a few tens of meters. We identified period B1 as a time of stepwise transgressions between ~230 and 150 ka, followed by a short regression between ca. 150 and 130 ka. Lake level rose stepwise during period B2, until ~30 ka. During the past ~30 ka, a regression and a final transgression occurred, each lasting about 15 ka. The major lowstand periods in Lake Van occurred during glacial periods, suggesting climatic control on water level changes (i.e. greatly reduced precipitation led to lower lake levels). Although climate forcing was the dominant cause for dramatic water level changes in Lake Van, volcanic and tectonic forcing factors may have contributed as well. For instance, the number of distinct tephra layers, some several meters thick, increases dramatically in the uppermost ~100 m of the sediment record (i.e. the past ~230 ka), an interval that coincides largely with low-magnitude lake level fluctuations. Tectonic activity, highlighted by extensional and/or compressional faults across the basin margins, probably also affected the lake level of Lake Van in the past.  相似文献   
282.
The Total Electron Content (TEC) prediction performances of the empirical IRI model and IRI-PLAS model were investigated by comparing the GPS-based TEC values provided by the IONOLAB group. TEC values were obtained on equinox (March 21 and September 23) and solstice (June 21, and December 21) days in low (2009), medium (2012) and high (2015) solar activity periods at Istanbul, Turkey. The prediction performances of the models were statistically analyzed based on the differences between the GPS-TEC and the empirical models, considering the maximum and minimum deviations, the correlation analysis and the root mean square error (RMSE). As a result of the investigation, it is seen that the empirical models have similar predictive performances when the plasmaspheric effects are neglected, and the IRI-PLAS estimations are generally a little closer to the observed GPS-TEC values than all options of IRI-2016 model. Also, it can be said that “IRI2001”, one of the IRI-2016’s “topside” options, can make better predictions than other options and “IG” solar proxy option of IRI-PLAS model is a more appropriate option than the others in TEC calculations over Istanbul, Turkey.  相似文献   
283.
As the Red Sea overflow water (RSOW) enters the Gulf of Aden (GOA), it interacts with a sequence of nearly barotropic, mesoscale eddies originating in the Indian Ocean. To investigate how these eddies impact the dispersal and eastward transport of the RSOW toward the Indian Ocean, a high resolution 3D regional model is employed to explore systematically the interaction between the RSOW and mesoscale eddies. Two types of experiments are conducted. In the first set, we simulate the behavior of RSOW in the presence of an idealized cyclone and an idealized anticyclone. The second type of simulation involves nesting of the regional model (ROMS) within a data-assimilating global model (HYCOM), in which a sequence of mesoscale eddies entering the Gulf of Aden is realistically captured. This simulation is integrated for one year, and includes a simple representation of the seasonality of the RSOW.Bower et al. (2002) suggest that the Red Sea overflow might be a western boundary undercurrent. Consistent with these expectations, the idealized simulations show that the preferred pathway of the RSOW in the absence of eddies is along the coast of Somalia (southern continental shelf) as a western boundary undercurrent. Simultaneously, a cyclonic circulation is generated in the far western GOA due to vortex stretching by the descending outflow. The presence of a cyclone in the western GOA increases the peak RSOW transport, but the cyclone itself rapidly loses its coherence after interacting with the rough topography in the western GOA. The presence of an anticyclone tends to block the preferred boundary pathway and inhibits the eastward transport of the RSOW. The eddies also result in substantially increased mixing of the RSOW in the western GOA.On the basis of the more realistic ROMS experiment, it is found that the modeled RSOW leaves the western part of the Gulf of Aden in short episodic bursts with transports that are an order of magnitude greater than that associated with the quasi-steady RSOW inflow into GOA. Such enhancement in RSOW transport is shown to be induced by cyclonic eddies that cause a rapid discharge of RSOW from the western part of the GOA. We conclude that mesoscale eddies play a key role in the transport and mixing of the RSOW within GOA.  相似文献   
284.
Mızrak  Sefa  Özdemir  Ahmet  Aslan  Ramazan 《Natural Hazards》2021,109(3):2241-2259
Natural Hazards - Worldwide studies show that gender is an important variable affecting disaster risk perception and that women have high levels of disaster risk perception. The objective of this...  相似文献   
285.
286.
287.
288.
289.
290.
Soil erosion is one of the most important environmental problems. In the case of small scale areas where soil properties and climate have relatively uniform characteristics, vegetation cover and topography (i.e. ground slope) are the main factors that affect the amount of soil erosion. Lack of vegetation cover on bare soil areas, including forest road side slopes, especially in mountainous regions with steep slopes, may significantly increase the erosion rate. Determining and classifying erosion risks in such areas can help preventing environmental impacts. In this study, remotely sensed data and elevation data were used to extract and classify bare soil erosion risk areas for a study area selected from Hatila Valley Natural Protected Area in northeastern Turkey. High resolution IKONOS imagery was used to apply land use classification in ERDAS Imagine 9.0. To generate erosion risk map of the bare soil areas, classified image was superimposed on top of slope map, generated based on a Digital Elevation Model (DEM) in ArcGIS 9.2. The results indicated that 1.43, 5.85, 34.62, 53.16, and 4.94% of the bare soil areas in the study area were under very low, low, medium, high, and very high erosion risks, respectively. The overall classification accuracy of 82.5% indicated the potential of the proposed methodology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号