首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24413篇
  免费   172篇
  国内免费   918篇
测绘学   1410篇
大气科学   1976篇
地球物理   4501篇
地质学   11598篇
海洋学   1002篇
天文学   1634篇
综合类   2161篇
自然地理   1221篇
  2020年   1篇
  2018年   4766篇
  2017年   4039篇
  2016年   2576篇
  2015年   233篇
  2014年   82篇
  2013年   26篇
  2012年   987篇
  2011年   2729篇
  2010年   2014篇
  2009年   2311篇
  2008年   1888篇
  2007年   2361篇
  2006年   54篇
  2005年   195篇
  2004年   403篇
  2003年   410篇
  2002年   249篇
  2001年   48篇
  2000年   51篇
  1999年   13篇
  1998年   21篇
  1981年   21篇
  1980年   19篇
  1976年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
An examination of river channels has ability to provide substantial information regarding the geomorphic characteristics, control of lithology, tectonic uplift and geomorphic evolution during the geological past of an area. In this paper, a detailed study of geomorphic and structural investigation has been carried out for Pravara basin, Maharashtra, with the help of 90-m resolution SRTM DEM and geospatial techniques. Drainage network analysis performed in this paper demonstrates the general geomorphic characteristics, while the analysis of longitudinal profile synthesises lithological control over Pravara basin. Pravara is a 6th order drainage basin, encompassing an area of 2637 km2. Bifurcation ratio reveals low to moderate structural control. Due to the hard rock lithology, the drainage density and stream frequency are low, and it indicates higher permeability in the sub-surface layers. The shape parameters denote that Pravara is highly elongated and it is easier to control floods in this basin. Relief parameters show very steep slope and higher vulnerability to the slope failure in some areas. Upstream of Pravara river has shown that series of breaks and knickzones indicate active erosion and acute lithological control on the channel. Major breaks are observed only in the main channel whereas in two major tributaries, no such breaks found, instead these tributaries are characterised by several knickzones which indicate regional variation in the lithological physiognomies. Different lithological stages on knickpoint and channel incision substantiate rejuvenation of Pravara river in several phases during geological past. The geospatial methodology carried out in this study can be pragmatic elsewhere around this world to recognise the geomorphic appearances and lithological control of a drainage basin.  相似文献   
992.
This study attempted to examine the effects of biochar amendment together with bio-fertilizer on soybean yield and its qualitative properties, as well as a few chemical properties of soil through a factorial randomized complete block design at three replications in east of Golestan Province (Iran) during 2014. The two factors under study included the following: (1) biochar amendment (in four levels of 0, 2.5, 8, and 16 tons per hectare), (2) bio-fertilizer containing phosphorus and sulfur growth-promoting rhizobacteria (in two levels of inoculation and non-inoculation) applied through foliar feeding. The results of analysis of variance indicated that interactions of biochar amendment and bio-fertilizer on harvest index and grain yield were significant (p ≤?0.01). According to the results of this study, the highest harvest index and oil content were 56.9, and 17.7%, respectively, in the treatment of 8 tons per hectare biochar and inoculation with bio-fertilizer. The lowest harvest index and the lowest oil content were in the control treatment. The interaction of biochar and bio-fertilizer on bulk density and cation exchange capacity was significant (p ≤?0.01). The results of this study demonstrated that biochar affected the amount of residual nitrogen in the soil after harvest, cation exchange capacity (CEC), acidity (pH), and electrical conductivity (EC). The highest grain yield (3440 kg/ha) was in the 8-ton biochar treatment with inoculated bio-fertilizer. Our study concludes that the biochar and bio-fertilizers can improve grain yield of soybean till 51% relative to the control.  相似文献   
993.
Developing the pore water pressures in loose to medium sands below the water table may lead to liquefaction during earthquakes. The simulation of liquefaction (cyclic mobility and flow liquefaction) in sandy soils is one of the major challenges in constitutive modeling of soils. This paper presents the simulation of sand behavior using a critical state bounding surface plasticity model (Dafalias and Manzari’s model, 2004) during monotonic and cyclic loading. The drained, undrained, and cyclic triaxial tests were simulated using Dafalias and Manzari’s model. The simulation results showed that the model predicts behavior of sand, reasonably well. Also, for CSR?<?0.2, number of cycles for liquefaction is significantly increased. The residual strength of Babolsar sand is produced when it is deformed to an axial strain of 20 to 25%.  相似文献   
994.
Aerosol optical depth (AOD), Angstrom exponent (AE), and ozone monitoring instrument aerosols index (OMI-AI) data, derived from MODerate Resolution Imaging Spectroradiometer (MODIS) and OMI sensor on board NASA’s Aqua satellite and NASA-Aura satellite platforms, have been analyzed and classified over Baghdad, Iraq, for an 8-year period (2008–2015). In order to give an obvious understanding of temporal inconsistency in the characteristics and classification of aerosols during each season separately, PREDE POM-02 sky radiometer measurements of AOD, carried out during a 2-year period (2014–2015), were compared with MODIS–Aqua AODs. On seasonal bases, MODIS–Aqua AODs corroborate well with ground-based measurements, with correlation coefficients ranging between 0.74 and 0.8 and RMSE ranging from 0.097 to 0.062 during spring and autumn seasons respectively. The overall satellite- and ground-based measurement comparisons showed a good agreement with correlation coefficients of 0.78 and RMSE of 0.066. These results suggest that MODIS–Aqua gives a good estimate of AOD. Analysis of MODIS–Aqua data for the 8-year period showed that the overall mean AOD, AE, and OMI-AI over Baghdad were 0.44?±?0.16, 0.77?±?0.29, and 1.34?±?0.33 respectively. AOD records presented a unique peak which was extended from mid-spring (April) to mid-summer (July) while the AE annual variability indicated a more complicated behavior with minimum values during the period from late spring (May) to early autumn (September). The maximum AOD and OMI-AI values occurred during summer while their minimum values occurred during winter. The AE showed an opposite behavior to that of AOD such that the highest AE values occurred during autumn and winter and the lowest values happened during spring and summer. This behavior may be attributed to the domination of coarse aerosol particles during autumn and winter seasons and fine aerosol particles during spring and summer seasons. A Hybrid Single-Particle Lagrangian Integrated Trajectory model was utilized to determine the source of air mass transport and to recognize the variability of aerosol origin regions. Finally, AOD, AE, and OMI-AI values have been employed to identify several aerosol types and to present seasonal heterogeneity in their contribution based on their origins.  相似文献   
995.
Temperature is one of the variables that influence the elasto-plastic behavior and integrity of rock outcrops. Fluctuations in temperature can trigger alteration of some of the mineral properties and impact the brittle-plastic transition. Initiation and propagation of thermally induced tension cracks tend to weaken most rock types. The principal goal of this study was to anticipate impacts of thermal stress-strain cycles on the dynamic response of representative rock units exposed in the Khewra Gorge of the Salt Range Punjab of Pakistan. Ten types of sedimentary rock units were sampled, including marl, dolomite, three types of limestone, and five different sandstones exhibiting varying characteristics in outcrop. Boulder specimens were collected from the field and transported to the laboratory to prepare 50 drill cores that could be subjected to thermal cycling between 50 and 200 °C in increments of 50 °C. Room temperature core samples were tested using an Erudite resonance frequency meter to measure their Q-factors and the resonance frequency (Fr) at an applied loading frequency of 7 KHz with 0.01 V output voltage. Results suggest that thermal cycling tends to reduce the dynamic Young’s modulus (Ed) and Q-factor. Other parameters, such as damping ratio (ξ), specific damping capacity (Ψ), and loss factor (?) appeared to increase with increasing temperature cycles, likely as a result of developing thermally induced tensile fractures. The resultant values of the null hypothesis (t-critical and t-stats) suggests that the null hypothesis can be discarded because there was no observable difference between the measured and expected values for the cores tested. The observations and data emanating from this study might be useful in designing low-level radioactive waste landfills, nuclear waste repositories, and deep underground excavations where the increased temperature could alter the mechanical behavior of the parent rock mass.  相似文献   
996.
Soil contamination with cadmium has become major concern all over the world because of its adverse impacts on ecosystem health and agricultural land. Soil amendment with biochar may have varied effects on physical and chemical properties of soil. The objective of the study was to explore the impact of sugarcane filter-cake biochar on physiological performance and growth of lettuce in an aged soil. Four different doses (0, 1.5%, 3%, and 5%) of biochar were used in the soil and conditioned for 1 month. After this, lettuce seedlings were grown in the soil. The results showed that the biochar treatment improved the fresh and dry biomass of leaves and roots as well as plant height while diminished the bioavailability of cadmium from the soil. As compared to control, biochar significantly enhanced the chlorophyll content in lettuce leaves. Due to the biochar amendment, the oxidative stress decreased in lettuce shoots over the control. As compared to control, concentration of cadmium in lettuce significantly decreased after the application of biochar. It was concluded that biochar could mitigate the toxicity of cadmium in lettuce by altering the biochemical and physiological processes in cadmium contaminated soil.  相似文献   
997.
Geotechnical construction is responsible for the overall stability of superstructures, and if there are design errors, the structure will be exposed to potential problems. Geotechnical design starts with the correct interpretation of the target ground. Southeastern Iraq is mainly comprised of an alluvial plain with diverse geological features, and, therefore, geotechnical design requires a detailed interpretation and understanding of the area. This paper reports on laboratory and field tests and in-depth analyses conducted on these alluvial plains. The results reveal that the upper layer of this area is highly over-consolidated. This may have been caused by the removal of overburden pressure as a result of glaciation and desiccation. The highly over-consolidated soils caused considerable sample disturbance by swelling the bored sample; this provided less reliable results. However, the cone penetration test was regarded as the most appropriate field assessment method for deriving sensible geotechnical design parameters. Despite its limitations in clayey soils, the standard penetration test provided results that matched well with previous observations due to the high penetration resistance of the highly over-consolidated ground. Down-hole tests and plate load tests were considered less reliable methods due to their limited applicability in this area. This study considers geographical features, laboratory methods, and empirical correlations from in situ tests, and, therefore, provides a well-summarized guideline to evaluate special geotechnical characteristics of the alluvial plain in southeastern Iraq.  相似文献   
998.
The Indonesian archipelago which has over 15,000 islands, lies in the tropics between Asia and Australia. This eventually alters the rainfall variability over the region, which was influenced by the Asian-Australian monsoon and controlled by intraseasonal variabilities such as convectively coupled equatorial waves (CCEW), i.e., Kelvin, n?=?1 equatorial Rossby (ER), mixed Rossby gravity (MRG), and n?=?1 Westward inertio gravity (WIG), including the Madden–Julian Oscillation (MJO). This study examines a 15-year 3B42 data for trapping CCEW and MJO in the region of Indonesia during both active and extreme Western North Pacific (WNP) and Australian (AU) monsoon phases, which are then compared with 30-year rainfall anomalies among 38 synoptic stations over Indonesia. The space–time spectral analysis is employed to filter each wave including the MJO in the equator, then proceeding with the empirical orthogonal function (EOF) method to seek each wave peak which then coincides with WNP and AU monsoon peaks over Indonesia. It is concluded that an extreme monsoon classification has proven to control rainfall activity related to the CCEW and MJO at 60.66% during December through February (DJF)-WNP for only the significant wave perturbation value. Meanwhile, the CCEW and MJO significantly increase/decrease precipitation at Day 0 for about 37.88% from the total of Day 1st to Day end. Although the contribution of the CCEW and MJO does not profoundly influence rainfall activity during monsoon phase over Indonesia, they still modulate weather condition for more than 50%. On the other hand, a complex topography with a number of land–sea complexities is capable of influencing the rainfall variability in the region as a negative relationship is associated with the CCEW and MJO either during DJF-WNP or July through August (JAS)-AU monsoon phase.  相似文献   
999.
Ground penetrating radar (GPR) is an effective geophysical method for environmental and engineering exploration. However, significant background interference occurs around most work sites, which increases the difficulty of analyzing and interpreting GPR profiles. For time-distance profile analyses, more accurate results can be obtained using the instantaneous parameters of the analytic signals. In this study, these instantaneous parameters are extracted and compared using 1D model waveform and 2D model strong interference profiles. The results show that the instantaneous amplitude gradient effectively reflects the model information, even under strong interference. The instantaneous amplitude gradient is applied to GPR survey data from a study site, and the results indicate that the technique reflects the underground structure information of the survey area. Drilling verification further confirms that the instantaneous amplitude gradient accurately reflects the underground structure information.  相似文献   
1000.
Flowing well test is one of the tools employed to identify transmissivity and storage coefficient of a confined aquifer where the potentiometric surface is located above the ground surface, so that the groundwater flows naturally from the well without pumping. During a flowing well test, constant hydraulic head is preserved at the well while the discharge from the well decreases with time and the temporal variation of discharge provides significant information about aquifer characteristics. In this study, a simple and straightforward approach is presented as an alternative to a number of graphical or error minimization-based techniques available in the literature for analyzing data from flowing well tests. The proposed method employs a polynomial regression equation to establish a link between observed discharge and the theoretical dimensionless discharge that is introduced in the analytical solution, so as to retrieve the aquifer parameters. The method is tested with a vast number of synthetically generated data sets as well as a real data set reported in the literature. Besides its simplicity, the present method is seen to produce highly accurate and reliable estimations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号