首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   417篇
  免费   5篇
  国内免费   5篇
测绘学   3篇
大气科学   26篇
地球物理   95篇
地质学   94篇
海洋学   76篇
天文学   104篇
综合类   4篇
自然地理   25篇
  2021年   4篇
  2020年   3篇
  2019年   12篇
  2018年   7篇
  2017年   10篇
  2016年   11篇
  2015年   8篇
  2014年   14篇
  2013年   16篇
  2012年   10篇
  2011年   14篇
  2010年   15篇
  2009年   21篇
  2008年   20篇
  2007年   30篇
  2006年   19篇
  2005年   13篇
  2004年   20篇
  2003年   11篇
  2002年   17篇
  2001年   13篇
  2000年   7篇
  1999年   4篇
  1998年   5篇
  1997年   7篇
  1996年   10篇
  1995年   11篇
  1994年   2篇
  1993年   6篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1988年   6篇
  1987年   2篇
  1986年   4篇
  1985年   6篇
  1984年   3篇
  1983年   9篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1977年   3篇
  1976年   8篇
  1975年   7篇
  1973年   8篇
  1972年   4篇
  1971年   3篇
  1969年   1篇
  1967年   1篇
排序方式: 共有427条查询结果,搜索用时 31 毫秒
151.
152.
In order to evaluate cumulus parameterization (CP) schemes for hydrological applications, the Pennsylvania State University–National Center for Atmospheric Research's fifth‐generation mesoscale model (MM5) was used to simulate a summer monsoon in east China. The performances of five CP schemes (Anthes–Kuo, Betts–Miller, Fritsch–Chappell, Kain–Fritsch, and Grell) were evaluated in terms of their ability to simulate amount of rainfall during the heavy, moderate, and light phases of the event. The Grell scheme was found to be the most robust, performing well at all rainfall intensity and spatial scales. The Betts–Miller scheme also performed well, particularly at larger scales, but its assumptions may make it inapplicable to non‐tropical environments and at smaller scales. The Kain–Fritsch scheme was the best at simulating moderate rainfall rates, and was found to be superior to the Fritsch–Chappell scheme on which it was based. The Anthes–Kuo scheme was found to underpredict precipitation consistently at the mesoscale. Simulation performance was found to improve when schemes that included downdrafts were used in conjunction with schemes that did not include downdrafts. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
153.
A rocket observation of cosmic soft X-rays suggests the existence of transient, recurrent soft X-ray sources which are found variable during the flight time of the rocket. Some of the soft X-ray sources thus far reported are considered to be of this time. These sources are listed in Table I, and their positions are shown in Figure 2.Paper presented at the COSPAR Symposium on Fast Transients in X- and Gamma-Rays, held at Varna, Bulgaria, 29–31 May, 1975.  相似文献   
154.
The availability of an equation to evaluate the influence of multiple scattering in the single scattering process corresponding to a layer of arbitrary optical thickness was established. In order to confirm the validity of this equation, the radiance distribution in this layer was computed using a plane–parallel layer model based on the successive order of scattering method. The relative errors in a radiance distribution computed were evaluated as a function of optical thickness by the derived equation. It was shown that this equation provides a theoretical background for determining layer thickness using the plane–parallel layer model.  相似文献   
155.
A statistical analysis of two consecutive sequences of observations on radiolarian abundances in the western North Pacific, by methods appropriate to data on the simplex (i.e., compositional data), show that although the overall graphical presentations of the frequencies appear similar, there are substantial differences in the earlier part of each of the series. The results of the multivariate analyses are used for identifying those species that contribute most to the analysis. A brief guide to the mathematical properties of compositional data is given.  相似文献   
156.
A next-generation drilling system, equipped with a thermal drilling device, is proposed for glacier ice. The system is designed to penetrate glacier ice via melting of the ice and continuously analyze melt-water in a contamination-free sonde. This new type of drilling system is expected to provide analysis data in less time and at less cost than existing systems. Because of the limited number of parameters that can be measured, the proposed system will not take the place of conventional drilling systems that are used to obtain ice cores; however, it will provide a useful method for quickly and simply investigating glacier ice.An electro-thermal drilling device is one of the most important elements needed to develop the proposed system. To estimate the thermal supply required to reach a target depth in a reasonable time, laboratory experiments were conducted using ice blocks and a small sonde equipped solely with heaters. Thermal calculations were then performed under a limited range of conditions. The experiments were undertaken to investigate the effects of the shape and material of the drill head and heater temperature on the rate of penetration into the ice. Additional thermal calculations were then performed based on the experimental results.According to the simple thermal calculations, if the thermal loss that occurs while heat is transferred from the heater to ice (in melting the ice) is assumed to be 50%, the total thermal supply required for heaters in the sonde and cable is as follows: (i) 4.8 kW (sonde) plus 0 W (cable) to penetrate to 300 m depth over 10 days into temperate glacier ice for which the temperature is 0 °C at all depths and to maintain a water layer along 300 m of cable; (ii) 10 kW (sonde) plus 19–32 kW (cable) to penetrate to 1000 m depth over 1 month into cold glacier ice for which the temperature is −25 °C at the surface and 0 °C at 1000 m depth and to maintain a water layer along 1000 m of cable; and (iii) 19 kW (sonde) plus 140–235 kW (cable) to penetrate to 3000 m depth over 2 months into an ice sheet for which the temperature is −55 °C at the surface and 0 °C at 3000 m depth and to maintain a water layer along 3000 m of cable. The thermal supply required for the cable is strongly affected by the thickness of the water layer, cable diameter, and the horizontal distance from the ice wall at which the ice temperature was maintained at its initial temperature. A large thermal supply is required to heat 3000 m of cable in an ice sheet (scenario (iii) above), but penetration into glacier ice (scenarios (i) and (ii) above) could be realistic with the use of a currently employed generator.  相似文献   
157.
Multispectral satellite remote sensing can predict shallow-water depth distribution inexpensively and exhaustively, but it requires many in situ measurements for calibration. To extend its feasibility, we improved a recently developed technique, for the first time, to obtain a generalized predictor of depth. We used six WorldView-2 images and obtained a predictor that yielded a 0.648 m root-mean-square error against a dataset with a 5.544 m standard deviation of depth. The predictor can be used with as few as two pixels with known depth per image, or with no depth data, if only relative depth is needed.  相似文献   
158.
Normal mode approaches for calculating viscoelastic responses of self-gravitating and compressible spherical earth models have an intrinsic problem of determining the roots of the secular equation and the associated residues in the Laplace domain. To bypass this problem, a method based on numerical inverse Laplace integration was developed by Tanaka et al. (2006, 2007) for computations of viscoelastic deformation caused by an internal dislocation. The advantage of this approach is that the root-finding problem is avoided without imposing additional constraints on the governing equations and earth models. In this study, we apply the same algorithm to computations of viscoelastic responses to a surface load and show that the results obtained by this approach agree well with those obtained by a time-domain approach that does not need determinations of the normal modes in the Laplace domain. Using the elastic earth model PREM and a convex viscosity profile, we calculate viscoelastic load Love numbers (h, l, k) for compressible and incompressible models. Comparisons between the results show that effects due to compressibility are consistent with results obtained by previous studies and that the rate differences between the two models total 10–40%. This will serve as an independent method to confirm results obtained by time-domain approaches and will usefully increase the reliability when modeling postglacial rebound.  相似文献   
159.
While hydraulic tomography (HT) is a mature aquifer characterization technology, its applications to characterize hydrogeology of kilometer‐scale fault and fracture zones are rare. This paper sequentially analyzes datasets from two new pumping tests as well as those from two previous pumping tests analyzed by Illman et al. (2009) at a fractured granite site in Mizunami, Japan. Results of this analysis show that datasets from two previous pumping tests at one side of a fault zone as used in the previous study led to inaccurate mapping of fracture and fault zones. Inclusion of the datasets from the two new pumping tests (one of which was conducted on the other side of the fault) yields locations of the fault zone consistent with those based on geological mapping. The new datasets also produce a detailed image of the irregular fault zone, which is not available from geological investigation alone and the previous study. As a result, we conclude that if prior knowledge about geological structures at a field site is considered during the design of HT surveys, valuable non‐redundant datasets about the fracture and fault zones can be collected. Only with these non‐redundant data sets, can HT then be a viable and robust tool for delineating fracture and fault distributions over kilometer scales, even when only a limited number of boreholes are available. In essence, this paper proves that HT is a new tool for geologists, geophysicists, and engineers for mapping large‐scale fracture and fault zone distributions.  相似文献   
160.
Mooring and hydrographic observations were conducted from September 2012 to May 2014 at the mouth of Otsuchi Bay, a ria along the Pacific coast of Japan. Our observations quantitatively demonstrated that the circulation and the water properties of Otsuchi Bay are strongly influenced by the Tsugaru Warm Current (TWC) and Oyashio Current (OY) at seasonal and subseasonal time scales. Two bottom-mounted velocity profilers and temperature and salinity measurements beneath the near-surface halocline showed a counterclockwise lateral circulation pattern related to the TWC, which was enhanced from summer to autumn. From winter to early spring, the lateral circulation patterns related to the TWC weakened and the influence of the OY occasionally increased. When the OY was weak, surface flows became an overturning structure, with outflows in the upper layer and inflows in the lower layer. When the OY was strong and passed close to the Sanriku coast, the circulation became highly variable and intermittent. Intrusions of the markedly low-salinity OY water were observed on two occasions and persisted for periods of several weeks to several months. Salinity was sometimes less than 33.7, the lower limit of the typical TWC from late summer to autumn even when the TWC dominates. We suggested that this is the seasonal fluctuations of the TWC itself, as the upstream current of the Tsushima Warm Current is freshened in summer as a result of the influence of the Changjiang River. The surface water was generally fresher in the south of the bay than in the north, suggesting the Coriolis deflection of the river plume.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号