首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   5篇
  国内免费   1篇
测绘学   1篇
大气科学   3篇
地球物理   21篇
地质学   25篇
海洋学   15篇
天文学   14篇
综合类   1篇
自然地理   3篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2017年   7篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   4篇
  2011年   5篇
  2010年   6篇
  2009年   6篇
  2008年   2篇
  2007年   5篇
  2006年   3篇
  2005年   5篇
  2004年   6篇
  2003年   3篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1992年   1篇
  1985年   1篇
排序方式: 共有83条查询结果,搜索用时 250 毫秒
11.
In meandering rivers cut into bedrock, erosion across a channel cross‐section can be strongly asymmetric. At a meander apex, deep undercutting of the outer bank can result in the formation of a hanging cliff (which may drive hillslope failure), whereas the inner bank adjoins a slip‐off slope that connects to the hillslope itself. Here we propose a physically‐based model for predicting channel planform migration and incision, point bar and slip‐off slope formation, bedrock abrasion, the spatial distribution of alluvial cover, and adaptation of channel width in a mixed bedrock‐alluvial channel. We simplify the analysis by considering a numerical model of steady, uniform bend flow satisfying cyclic boundary conditions. Thus in our analysis, ‘sediment supply’, i.e. the total volume of alluvium in the system, is conserved. In our numerical simulations, the migration rate of the outer bank is a specified parameter. Our simulations demonstrate the existence of an approximate state of dynamic equilibrium corresponding to a near‐solution of permanent form in which a bend of constant curvature, width, cross‐sectional shape and alluvial cover distribution migrates diagonally downward at constant speed, leaving a bedrock equivalent of a point bar on the inside of the bend. Channel width is set internally by the processes of migration and incision. We find that equilibrium width increases with increasing sediment supply, but is insensitive to outer bank migration rate. The slope of the bedrock point bar varies inversely with both outer bank migration rate and sediment supply. Although the migration rate of the outer bank is externally imposed here, we discuss a model modification that would allow lateral side‐wall abrasion to be treated in a manner similar to the process of bedrock incision. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
12.
A large meander of the Kuroshio was generated in the region off the southern coast of Japan in August 2004 and continued until approximately July 2005. The formation and decay of the large-meander (LM) path was observed by bottom pressure (BP) sensors installed on inverted echo sounders (PIESs) and a seismic observing system off Shikoku. The variation in BP was examined focusing on the development, persistence, and decay of the LM path. The BP was found to be depressed associated with a Kuroshio path disturbance, called a small meander, and this BP depression led the sea surface height (SSH) depression by up to approximately two months. The temporal phase shift between the sea surface and deep disturbances was significantly greater than those of other small meanders that did not develop into large meanders. After the formation of the LM path, the BP beneath the Kuroshio increased with a lag of approximately two months behind the SSH elevation along with the upward displacement of the main thermocline. The increase in BP is associated with that of the positive southward BP gradient anomaly, i.e., the eastward deep Kuroshio current anomaly, which suggests an enhancement of the topographic steering and stability of the LM path. This is consistent with the fact that no small meanders occurred in the early LM period from late July 2004 to late January 2005.  相似文献   
13.
The friction developed between a steel base plate and a mortar base contributes shear resistance to the building system during a seismic event. In order to investigate the possible sliding behavior between the base plate and the mortar, a shake table study is undertaken using a large rigid mass supported by steel contact elements which rest on mortar surfaces connected to the shake table. Horizontal input accelerations are considered at various magnitudes and frequencies. The results provide a constant friction coefficient during sliding with an average value of approximately 0.78. A theoretical formulation of the friction behavior is also undertaken. The theoretical equations show that the sliding behavior is dependent on the ratio of the friction force to the input force. The addition of vertical accelerations to the system further complicates the sliding behavior as a result of the varying normal force. This results in a variable friction resistance which is a function of the amplitude, phase, and frequency of the horizontal and vertical input motions. In general, this study showed a consistent and reliable sliding behavior between steel and mortar. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
14.
Subduction of lithosphere, involving surficial materials, into the deep mantle is fundamental to the chemical evolution of the Earth. However, the chemical evolution of the lithosphere during subduction to depth remains equivocal. In order to identify materials subjected to geological processes near the surface and at depths in subduction zones, we examined B and Li isotopes behavior in a unique diamondiferous, K-rich tourmaline (K-tourmaline) from the Kokchetav ultrahigh-pressure metamorphic belt. The K-tourmaline, which includes microdiamonds in its core, is enriched in 11B relative to 10B (δ11B = −1.2 to +7.7) and 7Li relative to 6Li (δ7Li = −1.1 to +3.1). It is suggested that the K-tourmaline crystallized at high-pressure in the diamond stability field from a silicate melt generated at high-pressure and temperature conditions of the Kokchetav peak metamorphism. The heavy isotope signature of this K-tourmaline differs from that of ordinary Na-tourmalines in crustal rocks, enriched in the light B isotope (δ11B = −16.6 to −2.3), which experienced isotope fractionation through metamorphic dehydration reactions. A possible source of the heavy B-isotope signature is serpentine in the subducted lithospheric mantle. Serpentinization of the lithospheric mantle, with enrichment of heavy B-isotope, can be produced by normal faulting at trench-outer rise or trench slope regions, followed by penetration of seawater into the lithospheric mantle. Serpentine breakdown in the lithospheric mantle subducted in subarc regions likely provided fluids with the heavy B-isotope signature, which was acquired during the serpentinization prior to subduction. The fluids could ascend and cause partial melting of the overlying crustal layer, and the resultant silicate melt could inherit the heavy B-isotope signature. The subducting lithospheric mantle is a key repository for modeling the flux of fluids and associated elements acquired at a near the surface into the deep mantle.  相似文献   
15.
The impact of quasi-decadal (QD: 8 to 18 years) variability in the tropical Pacific on ENSO events is investigated. It is found that there is a significant difference in the behavior of ENSO events between the phases of positive and negative anomalies of the QD Niño-3.4 index. During the period of negative QD-scale Niño-3.4 index, ENSO events, especially La Niña events, occur more frequently, and larger amplitudes of thermal anomalies related to El Niño events appear over the central to eastern equatorial Pacific. Furthermore, propagations of upper ocean heat content anomaly and a phase relationship between upper ocean heat content and Niño-3 index in the equatorial Pacific, which have been pointed out by previous studies, are clearly detected during the period of negative QD Niño-3.4 index.  相似文献   
16.
The n-alkane C31/(C29 + C31) ratios from surface sediments in the eastern equatorial Pacific (EEP) exhibit higher values to the north and lower values to the south across the southern edge (2–4°N) of the Intertropical Convergence Zone (ITCZ). Since plants tend to synthesize longer chain length n-alkanes in response to elevated temperature and/or aridity, the higher C31/(C29 + C31) ratios at northern sites suggest a higher contribution of vegetation under hot and/or dry conditions. This is consistent with the observation that northern sites receive higher levels of plant waxes transported by northeasterly trade winds from northern South America, where hot and dry conditions prevail. Furthermore, from a sediment core covering the past 750 ka (core HY04; 4°N, 95°W) we found that C31/(C29 + C31) ratios exhibit a long-term decrease from MIS (marine oxygen isotope stage) 17 to 13. During this period, the zonal SST (sea-surface temperature) gradient in the equatorial Pacific increased, suggesting an increase in Walker circulation. Such intensified Walker circulation may have enhanced moisture advection from the equatorial Atlantic warm pool to the adjacent northern South America, causing arid regions in northern South America to contract, which may explain long-term decrease in n-alkane chain lengths.  相似文献   
17.
Two-dimensional 18O/16O isotopic analysis of the Vigarano matrix was conducted by secondary ion-imaging using a novel two-dimensional ion-imager. Quantitative oxygen-isotope images (isotopographs) of the Vigarano matrix show that 16O-rich micrograins are scattered within 16O-poor matrix. This heterogeneous O-isotopic distribution indicates that matrix is composed of different O-isotopic components that formed in different locations and/or at different times. However, the O-isotopic composition of groundmass in the matrix is the same as the bulk isotopic composition of the matrix within ±5 uncertainty. The spatial resolution and isotopic precision of our technique should allow submicron-size objects (>0.2 μm) with extreme O-isotopic anomalous characteristics (δ18OSMOW ∼250) to be detectable in isotopographs. Because the mean grain size of the matrix is ∼0.2 μm, the inability to detect such O-isotopic anomalous objects indicates that isotopically anomalous micrograins (e.g., presolar grains) are extremely rare in the Vigarano matrix and that most objects in the matrix were formed in the solar nebula or in the parent body.  相似文献   
18.
Zircon is resistant to alteration over a wide range of geological environments, and isotopic ratios within the mineral provide constraints on ages and their parental magmas. Trace element compositions in zircon are also expected to reflect those of their parent magmas, and have a potential as essential indicators for their host rocks. Because most detrital zircons that accumulate at river mouths are derived primarily from granitoids, the classification of zircon within granitoids is potentially meaningful. This study employs the conventional classification scheme of granites (I‐, S‐, M‐, and A‐types). To clarify geochemical characteristics of zircons in A‐type granites, trace element compositions of zircons extracted from the A‐type Ashizuri granitoids were examined. Zircons from the Ashizuri granitoids commonly show enrichments of heavy rare earth elements and positive Ce anomalies, indicating that these zircons were igneous in origin. In addition, zircons in these A‐type granites are characterized by enrichments of Nb, Y, Ta, Th, and U and strong negative Eu anomalies, which exhibit good positive correlations with those in their whole rocks. This fact indicates that these signatures in zircons reflect well those in their parental bodies and are useful in identifying zircons derived from A‐type granite. Based on compilations of available data, zircons from A‐type granites can be clearly discriminated from other‐types of granites within Nb/Sr–Eu anomaly, U/Sr–Eu anomaly, Nb/Sr–U/Sr, and Nb/Sr–Ta/Sr cross‐plots. All indices used in these diagrams were selected based on the geochemical features of both zircon and whole rock of A‐type granites. Application of these discrimination diagrams to detrital zircons will likely provide further insights. For example, some Hadean detrital zircons plot in similar fields to A‐type granites, implying the existence of A‐type magmatism in the Earth's earliest history.  相似文献   
19.
Antidunes are fluvial bedforms that form in rivers with supercritical flows. The water surface over antidunes is strongly in phase with the bed surface, and the water surface is amplified to produce large surface waves. Many experimental studies have addressed antidunes; however, the shapes of three-dimensional antidunes in a wide channel with alternate bars have not yet been appropriately understood. In this study, we experimentally investigated the streamwise and transverse length scales of antidunes under conditions with a large width–depth ratio. Our experimental results provide evidence for the coevolution of antidunes and free alternate bars, and show for the first time that the development of free bars greatly alters the three-dimensional shape of water surface waves over antidunes. In the absence of free bars in a wide channel, multiple longitudinal wave trains form, and the number of wave trains counted in the transverse direction increases with increases in the width–depth ratio. However, the presence of free bars affects the local flow characteristics, resulting in a decrease of the number of wave trains in the transverse direction. Therefore, we propose a simple model for predicting the reduction in the number of wave trains by combining two previous theories for antidunes and free bars. Results obtained by the model were found to largely agree with experimental observations. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
20.

Since September 2017, the Kuroshio has taken a large-meander (LM) path in the region south of Japan. We examined characteristics of the 2017–present LM path in comparison with previous LM paths, using tide gauge, altimetric sea surface height, and bottom pressure data. The 2017–present LM path was formed from a path passing through a channel south of Hachijo-jima Island, while a typical LM path originated from a path through a channel north of Miyake-jima Island. The meander trough of this atypical path was found to be shifted far to the east and to vary on a timescale of months. These characteristics are different from those of a typical LM path but they are similar to those of the 1981–1984 LM path. Therefore, we identified two types of LM path; a stable and unstable LM paths. The 2017–present unstable type large meander has a zonal scale greater than that of the 2004–2005 stable type large meander and protrudes from the eastern boundary of the Shikoku Basin, i.e., Izu-Ogasawara Ridge. No significant bottom pressure depression was observed, associated with the formation of the 2017–present LM path, indicating that baroclinic instability was not important in the formation of this LM path. Due to no significant bottom steering, even during the 2017–present LM period, a mesoscale current path disturbance occurred southeast of Kyushu, propagated eastward, and amplified the offshore displacement of the Kuroshio.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号