首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   1篇
  国内免费   1篇
测绘学   1篇
大气科学   3篇
地球物理   29篇
地质学   7篇
海洋学   8篇
天文学   5篇
自然地理   1篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   4篇
  2011年   1篇
  2010年   3篇
  2008年   3篇
  2006年   3篇
  2005年   2篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   4篇
  1999年   5篇
  1995年   3篇
  1993年   1篇
  1991年   2篇
  1976年   1篇
排序方式: 共有54条查询结果,搜索用时 234 毫秒
41.
The development of ocean waves under explosive cyclones (ECs) is investigated in the Northwestern Pacific Ocean using a hindcast wave simulation around Japan during the period 1994 through 2014. A composite analysis of the ocean wave fields under ECs is used to investigate how the spatial patterns of the spectral wave parameters develop over time. Using dual criteria of a drop in sea level pressure below 980 hPa at the center of a cyclone and a decrease of at least 12 hPa over a 12-h period, ECs are identified in atmospheric reanalysis data. Two areas under an EC were identified with narrow directional spectra: the cold side of a warm front and the right-hand side of an EC (relative to the propagating direction). Because ECs are associated with atmospheric fronts, ocean waves develop very differently under ECs than they do under tropical cyclones. Moreover, ECs evolve very rapidly such that the development of the ocean wave field lags behind the peak wind speed by hours. In a case study of an EC that occurred in January 2013, the wave spectrum indicates that a warm front played a critical role in generating distinct ocean wave systems in the warm and cold zones along the warm front. Both the warm and cold zones have narrow directional and frequency spectra. In contrast, the ocean wave field in the third quadrant (rear left area relative to the propagation direction) of the EC is composed of swell and wind sea systems propagating in different directions.  相似文献   
42.
A predictability study on wave forecast of the Arctic Ocean is necessary to help identify hazardous areas and ensure sustainable shipping along the trans-Arctic routes. To assist with validation of the Arctic Ocean wave model, two drifting wave buoys were deployed off Point Barrow, Alaska for two months in September 2016. Both buoys measured significant wave heights exceeding 4 m during two different storm events on 19 September and 22 October. The NOAA-WAVEWATCH III? model with 16-km resolution was forced using wind and sea ice reanalysis data and obtained general agreement with the observation. The September storm was reproduced well; however, model accuracy deteriorated in October with a negative wave height bias of around 1 m during the October storm. Utilising reanalysis data, including the most up-to-date ERA5, this study investigated the cause: grid resolution, wind and ice forcing, and in situ sea level pressure observations assimilated for reanalysis. The analysis has found that there is a 20% reduction of in situ SLP observations in the area of interest, presumably due to fewer ships and deployment options during the sea ice advance period. The 63-member atmospheric ensemble reanalysis, ALERA2, has shown that this led to a larger ensemble spread in the October monthly mean wind field compared to September. Since atmospheric physics is complex during sea ice advance, it is speculated that the elevated uncertainty of synoptic-scale wind caused the negative wave model bias. This has implications for wave hindcasts and forecasts in the Arctic Ocean.  相似文献   
43.
The Tsugaru Strait, which connects the Sea of Japan with the Pacific Ocean, is characterized by the eastward Tsugaru Warm Current (TWC) and oscillating tidal currents of similar magnitude. A 15-day current observation was conducted in one of the two narrow channels in the strait, at the northwest tip of the Shimokita Peninsula. The observation revealed that the spectral energy of the semidiurnal current exceeds that of the diurnal current, contrary to the conventional view. The Tsugaru Strait regional model was developed to study the mechanism of this spectral energy reversal (140–141.5° E, 40.4–42.6° N, 500?m grid resolution). At the eastern and western open boundaries, the model was driven by the constant Tsugaru warm current and tidal elevation, which was adjusted by comparing the model with tidal gauge observations within the channel. The relative magnitude of the spectral energies differed from that of the observation when the model was driven by tide only. However, the spectral energy levels were reversed when the model was driven by both tide and current. The nonlinear interaction of periodic tidal currents and the steady TWC was explained by the vorticity equation, which describes the production and advection of residual currents from tidal currents. According to the model results, flow separation and advection of vorticity by the TWC was the most prominent factor in this phenomenon. Because of the strong nonlinearities, flow separation around the headland occurred during the tidal period with dominant current magnitude and furnished the main difference between the diurnal and semidiurnal interactions. These phenomena were enhanced by the complex topography, and demonstrate the importance of scale interaction, especially when developing high-resolution regional models.  相似文献   
44.
We investigated the relationship between variations in the thermal conductivity of surface sediments and the topography in the Nankai subduction zone off Tokai, central Japan, the easternmost part of the Nankai subduction zone, which has an accretionary prism with varied topography. We analyzed sediment thermal conductivity data obtained from the trough floor and accretionary prism. Variations in the thermal conductivity of sediments were related to the topographic features formed by accretionary prism development. Thermal conductivities of 1.1?W/m?K were measured on the trough floor where thick terrigenous turbidites have been deposited. The thermal conductivity of Nankai Trough floor sediments decreases from northeast to southwest along the trough, probably because of the decreased grain size and/or changes in sediment mineral composition. High thermal conductivities (??1.0?W/m?K) were measured in fault scarps on the accretionary prism. A landward increase in these values on the prism may be explained by decreased porosity of the sediments attributable to tectonic deformation during accretionary prism development. At the base of the fault scarp of the frontal thrust, low thermal conductivities (<0.9?W/m?K) were measured, likely reflecting the high porosity of the talus deposits. Low thermal conductivity (0.9?W/m?K) was also measured in slope basins on the accretionary prism, likely also related to the high porosity of the sediments. Our results demonstrate that, for accurate heat flow measurement in an area of varied topography, the geothermal gradient and the thermal conductivity of the sediments must be measured within regions with similar topographic features.  相似文献   
45.
Abstract A systematic geochemical study of sandstones from the Cretaceous Shimanto Supergroup and psammitic schists from the Oboke unit in Shikoku has been carried out in order to clarify the depositional age of the protoliths of the Oboke psammitic schists. The geochemical data, together with chronological and geologic data, led to the following conclusions. (i) It is inferred that Oboke psammitic schists are metamorphically equivalent to sandstones in the Hiwasa Formation of the Shimanto accretionary complex, deposited in a trench area during the Campanian, in eastern Shikoku. (ii) The protolith attained to maximum metamorphic conditions within 20 million years after the deposition. (iii) The accumulation of a large amount of coarse-grained clastic sediments in the trench area induced offscraping and underplating of the sediments in the subduction zone, forming the Hiwasa Formation and Oboke unit, respectively.  相似文献   
46.
Abstract. The role of larval settlement, post-settlement mortality and competition with a red algae in determining the patterns of abundance and distribution of the spirorbid tube worm Neodexiospira brasiliensis (Grube) (Polychaeta: Spirorbidae) on leaves of three seagrass species: Zostera marina Linnaeus, Zostera asiatica Miki and Phyllospadix iwatensis Makino were examined in Aininkap, Akkeshi Bay, Akkeshi, Hokkaido, Japan. Field collections of seagrass shoots were made at about 1-week intervals. The density of newly settled larvae (< 0.3 mm in tube diameter) increased significantly on Z. asiatica and P. iwatensis , but not on Z. marina during the sampling period. It was highest on Z. asiatica among the three seagrass species, followed by P. iwatensis and Z. marina . Newly settled larvae occurred more on the basal part of younger leaves of each seagrass species. Mortality tended to be high on Z. marina , followed by Z. asiatica and P. iwatensis , although the differences were not great. Size-specific mortality showed the existence of high mortality in early post-settlement stages on Z. asiatica and P. iwatenisis . Relatively high mortality was also suffered by individuals with a tube diameter over 1.5 mm. Growth in tube diameter of N. brasiliensis was slower on P. iwatensis than on the other two seagrasses. The effect of a calcareous red algae on larval settlement was investigated with removal experiments; however, no effect of red algae was detected. Patterns in the distribution and abundance of N. brasiliensis on leaves of three seagrass species resulted from the heterogeneity of larval settlement rather than from post-settlement mortality or competition with red algae. Different densities of larval settlement among the three seagrass species or on a leaf are likely to relate to larval behaviour, such as negative phototaxis.  相似文献   
47.
This paper presents the first application of a semi-active damper system to an actual building. The Semi-active Hydraulic Damper (SHD) can produce a maximum damping force of 1000 kN with an electric power of 70 W. It is compact, so a large number of them can be installed in a single building. It is thus possible to control the building's response during a severe earthquake, because a large control force is obtained in comparison with a conventional active control system. This paper outlines the building, the control system configuration, the SHD, the control method using a Linear Quadratic Regulator, the response analysis results of the controlled building, and the dynamic loading test results of the actual SHD. The simulation analysis shows that damage to buildings can be prevented in a severe earthquake by SHD control. The dynamic loading test results of the SHD are reported, which show that the specified design values were obtained in the basic characteristic test. The control performance test using simulated response time histories, also shows that the damping force agrees well with the command. Finally, it is confirmed that the semi-active damper system applied to an actual building effectively controls its response in severe earthquakes. Copyright © 1999 John Wiley & Sons Ltd.  相似文献   
48.
Soil pipes (continuous macropores expanding laterally in the soil subsurface) are a key factor controlling hillslope water cycles and sediment transport. Soil pipes usually enhance slope stability under rainfall events through their high water drainage ability, and pipe clogging by sediments is regarded as a risk for slope failure. In this study, we conducted a bench-scale pipe clogging experiment to clarify the effect of air mobility in soil pipes on water flow and water pressure build-up in the slope at the clogged point. Before pipe clogging, the soil pipe drained rainwater effectively and lowered the groundwater table. After the pipe clogging event, the mobility of air in the soil pipe before the clogging determined the water flow in the slope. When the air in the soil pipe connected to the atmosphere and moved freely, the water level in the soil pipe increased at the pipe clogging, and water pressure build-up was limited near the pipe outlet. On the other hand, when air in the soil pipe was entrapped by the clogging, water pressure suddenly increased, and the groundwater table of the whole slope rose correspondingly. This study clearly demonstrated the importance of pipe morphology with respect to air connectivity between the pipe and atmosphere to elucidate the water flow and slope stability during the pipe clogging event. © 2019 John Wiley & Sons, Ltd.  相似文献   
49.
We describe a demodulation scheme for the navigation message of GPS receivers on spin-stabilized rockets. Doppler frequencies due to fast and complex dynamics, in particular high-rate spin, cause errors in carrier frequency tracking. The effects of such errors on navigation message demodulation are described through theoretical analysis and numerical simulation. A demodulation scheme that includes a frequency estimator is proposed to account for frequency tracking errors. It is demonstrated that demodulation performance is degraded 5 dB due to frequency uncertainty. Simulation results showed that a demodulator which includes maximum likelihood (ML) frequency estimator achieves near-optimal symbol error rate under these conditions. Demodulation with ML estimator achieves a bit error rate below 10?5 for a C/N 0?=?35 dB–Hz, for spin rates below 2.7?Hz, and a rocket radius smaller than 1 m. For the cases in which computational capabilities of the on-board GPS receiver is insufficient to implement the demodulator with ML estimator, frequency estimation methods with low complexity were also tested through numerical simulation. The proposed Kay and Quinn-Fernandes combination achieves a bit error rate below 10?5 for a C/N 0?=?37 dB–Hz while requiring 1/10 of processing time.  相似文献   
50.
The recent spate of large earthquakes has triggered diverse performance requirements for structures. This has led to increasing worldwide interest in performance‐based design methods. To establish such methods, however, it is necessary to evaluate structure conditions after defining the loads, and this is difficult to accomplish. On the other hand, there has been steady progress on research and development of structural control techniques for improving structural performance. These technological innovations need to be rationally incorporated into structural design. In particular, semi‐active structural control techniques are effective in improving structural performance during large earthquakes. By effectively incorporating them into the design, it is possible to meet the various structural performance requirements. This paper first outlines the various structural control methods and focuses on the semi‐active structural control technique as the main topic. It then describes an example to verify the effectiveness of the semi‐active structural control technique in high‐rise buildings. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号