首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   378篇
  免费   10篇
  国内免费   7篇
测绘学   5篇
大气科学   30篇
地球物理   111篇
地质学   105篇
海洋学   81篇
天文学   28篇
综合类   3篇
自然地理   32篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   7篇
  2017年   12篇
  2016年   11篇
  2015年   8篇
  2014年   26篇
  2013年   14篇
  2012年   16篇
  2011年   14篇
  2010年   22篇
  2009年   22篇
  2008年   28篇
  2007年   20篇
  2006年   18篇
  2005年   22篇
  2004年   14篇
  2003年   14篇
  2002年   14篇
  2001年   14篇
  2000年   4篇
  1999年   8篇
  1998年   9篇
  1997年   4篇
  1996年   8篇
  1995年   3篇
  1993年   4篇
  1992年   3篇
  1990年   3篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1981年   2篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1975年   2篇
  1973年   1篇
  1964年   1篇
  1963年   1篇
  1962年   1篇
  1959年   1篇
  1956年   2篇
  1953年   1篇
  1951年   1篇
  1950年   2篇
排序方式: 共有395条查询结果,搜索用时 15 毫秒
351.
The staggered grid finite-difference method is a powerful tool in seismology and is commonly used to study earthquake source dynamics. In the staggered grid finite-difference method stress and particle velocity components are calculated at different grid points, and a faulting problem is a mixed boundary problem, therefore different implementations of fault boundary conditions have been proposed. Viriuex and Madariaga (1982) chose the shear stress grid as the fault surface, however, this method has several problems: (1) Fault slip leakage outside the fault, and (2) the stress bump beyond the crack tip caused by S waves is not well resolved. Madariaga et al. (1998) solved the latter problem via thick fault implementation, but the former problem remains and causes a new issue; displacement discontinuity across the slip is not well modeled because of the artificial thickness of the fault. In the present study we improve the implementation of the fault boundary conditions in the staggered grid finite-difference method by using a fictitious surface to satisfy the fault boundary conditions. In our implementation, velocity (or displacement) grids are set on the fault plane, stress grids are shifted half grid spacing from the fault and stress on the fictitious surface in the rupture zone is given such that the interpolated stress on the fault is equal to the frictional stress. Within the area which does not rupture, stress on the fictitious surface is given a condition of no discontinuity of the velocity (or displacement). Fault normal displacement (or velocity) is given such that the normal stress on the fault is continuous across the fault. Artificial viscous damping is introduced on the fault to avoid vibration caused by onset of the slip. Our implementation has five advantages over previous versions: (1) No leakage of the slip prior to rupture and (2) a zero thickness fault, (3) stress on the fault is reliably calculated, (4) our implementation is suitable for the study of fault constitutive laws, as slip is defined as the difference between displacement on the plane of z = + 0 and that of z = − 0, and (5) cessation of slip is achieved correctly.  相似文献   
352.
Groundwater pollution by arsenic is a major health threat in suburban areas of Hanoi, Vietnam. The present study evaluates the effect of the sedimentary environments of the Pleistocene and Holocene deposits, and the recharge systems, on the groundwater arsenic pollution in Hanoi suburbs distant from the Red River. At two study sites (Linh Dam and Tai Mo communes), undisturbed soil cores identified a Pleistocene confined aquifer (PCA) and Holocene unconfined aquifer (HUA) as major aquifers, and Holocene estuarine and deltaic sediments as an aquitard layer between the two aquifers. The Holocene estuarine sediments (approximately 25–40 m depth, 9.6–4.8 cal ka BP) contained notably high concentrations of arsenic and organic matter, both likely to have been accumulated by mangroves during the Holocene sea-level highstand. The pore waters in these particular sediments exhibited elevated levels of arsenic and dissolved organic carbon. Arsenic in groundwater was higher in the PCA (25–94 μg/L) than in the HUA (5.2–42 μg/L), in both the monitoring wells and neighboring household tubewells. Elevated arsenic concentration in the PCA groundwater was likely due to vertical infiltration through the arsenic-rich and organic-matter-rich overlying Holocene estuarine sediments, caused by massive groundwater abstraction from the PCA. Countermeasures to prevent arsenic pollution of the PCA groundwater may include seeking alternative water resources, reducing water consumption, and/or appropriate choice of aquifers for groundwater supply.  相似文献   
353.
Conclusions During the last ten years, aquaculture, especially mariculture has undergone remarkable expansion to counter-balance the gap between the supply and demand of fishery products in Japan. Its expansion has also been supported by the traditional preference of the Japanese people for seafood. Mariculture is now being forced to change its structure due to adverse economic circumstances such as the rise in the cost of energy, feeds and other materials for culture, low market prices, deterioration of environmental conditions, and many other factors. Before these constraints can be resolved, advanced scientific knowledge and technologies must be integrated to develop new types of aquaculture. Expansion of maricultural activities to more open-sea and off shore areas would be one route to follow. Technologies for the development of formulated diets not only for young but also for adults and larvae, establishment of feeding standards, prevention of epizootic diseases must support the establishment of modern aquaculture.The culture-based fisheries, or marine ranching, is becoming a subject for further development in Japan. Much research work has been conducted with a great degree of governmental support. Establishment of a net work of seedstock production farms has made it possible to carry out releasing experiments on a large scale. A newly integrated restoration system could be developed on the basis of these experiments, even though the profits resulting from the artificial restoration of stocks is not thouroughly verified at present. The commencement of a national scheme for culture-based fisheries would be a manifestation of the enthusiasm of the Japanese fish industry.  相似文献   
354.
Fe–Mg partitioning between post-perovskite and ferropericlase has been studied using a laser-heated diamond anvil cell at pressures up to 154 GPa and 2,010 K which corresponds to the conditions in the lowermost mantle. The composition of the phases in the recovered samples was determined using analytical transmission electron microscopy. Our results reveal that the Fe–Mg partition coefficient between post-perovskite and ferropericlase (K DPPv/Fp) increases with decreasing bulk iron content. The compositional dependence of K DPPv/Fp on the bulk iron content explains the inconsistency in previous studies, and the effect of the bulk iron content is the most dominant factor compared to other factors, such as temperature and aluminum content. Iron prefers ferropericlase compared to post-perovskite over a wide compositional range, whereas the iron content of post-perovskite (X FePPv, the mole fraction) does not exceed a value of 0.10. The iron-rich ferropericlase phase may have significant influence on the physical properties, such as the seismic velocity and electrical conductivity at the core–mantle boundary region.  相似文献   
355.
Analysis of current velocity and temperature records obtained from moored buoy systems deployed off the east coast of Japan reveals the intermittent occurrence of semi-diurnal internal tides and their manner of propagation. The internal tidal waves clearly propagate toward the shore, which is confirmed by cross-correlation of the onshore current velocity and temperature between neighboring stations. The propagation speed of the internal tide increases with water depth except in the area furthest offshore. In this area, motions near the second mode seem to occur occasionally, while in the nearshore area the motions for the most part consist of the first mode. Through harmonic analysis, it is shown that theM 1 internal motions were not vertically homogeneous. That is, the internal motions are greater at the lower level in the nearshore area while they are greater at the upper level in the offshore area. Pathways along which the energy of the internal tide should propagate are estimated in such a way that the characteristic curves pass through the area over which relatively large onshore/offshoreM 2 velocity is distributed. The movement of the characteristic ray of a certain phase explains the observed phase velocity estimated from the cross-correlation diagrams. Internal motions around the characteristic ray were pronounced in a rather wide area. Thus, it is suggested that the generation region of the internal tide in the present study area might be relatively wide.  相似文献   
356.
The Indian Ocean Dipole (IOD) can affect the El Niño–Southern Oscillation (ENSO) state of the following year, in addition to the well-known preconditioning by equatorial Pacific Warm Water Volume (WWV), as suggested by a study based on observations over the recent satellite era (1981–2009). The present paper explores the interdecadal robustness of this result over the 1872–2008 period. To this end, we develop a robust IOD index, which well exploits sparse historical observations in the tropical Indian Ocean, and an efficient proxy of WWV interannual variations based on the temporal integral of Pacific zonal wind stress (of a historical atmospheric reanalysis). A linear regression hindcast model based on these two indices in boreal fall explains 50 % of ENSO peak variance 14 months later, with significant contributions from both the IOD and WWV over most of the historical period and a similar skill for El Niño and La Niña events. Our results further reveal that, when combined with WWV, the IOD index provides a larger ENSO hindcast skill improvement than the Indian Ocean basin-wide mode, the Indian Monsoon or ENSO itself. Based on these results, we propose a revised scheme of Indo-Pacific interactions. In this scheme, the IOD–ENSO interactions favour a biennial timescale and interact with the slower recharge-discharge cycle intrinsic to the Pacific Ocean.  相似文献   
357.
We applied a three-dimensional ecosystem-physical coupled model including iron the effect to the Okhotsk Sea. In order to clarify the sources of iron, four dissolved iron compartments, based on the sources of supply, were added to Kawamiya et al.'s [1995, An ecological-physical coupled model applied to Station Papa. Journal of Oceanography, 51, 635-664] model (KKYS) to create our ecosystem model (KKYS-Fe). We hypothesized that four processes supply iron to sea water: atmospheric loadings from Northeastern Asia, input from the Amur River, dissolution from sediments and regeneration by zooplankton and bacteria. We simulated one year, from 1 January 2001 to 31 December 2001, using both KKYS-Fe and KKYS. KKYS could not reproduce the surface nitrate distribution after the spring bloom, whereas KKYS-Fe agreed well with observations in the northwestern Pacific because it includes iron limitation of phytoplankton growth. During the spring bloom, the main source of iron at the sea surface is from the atmosphere. The contribution of riverine iron to the total iron utilized for primary production is small in the Okhotsk Sea. Atmospheric deposition, the iron flux from sediment and regeneration of iron in the water column play important roles in maintaining high primary production in the Okhotsk Sea.  相似文献   
358.
Summary. The space and time characteristics of earthquake sequences, including a main shock, aftershocks and the recurrence of major shocks in a long time range, are investigated on a frictional fault model with non-uniform strengths and relaxation times, which is subjected to a time-dependent shear stress. Aftershocks with low stress drop take place successively in spaced regions so as to fill the gaps which have not yet been ruptured since the main shock, while those with high stress drop occur in and around the regions left unruptured during the main faulting. The frequency decay of aftershocks with time follows a hyperbolic law with the rates p consistent with observations. There are good linear relations in logarithmic scales for source area versus frequency and seismic moment versus frequency of the generated aftershocks. The b -value obtained in the present experiments appears slightly larger than that for observations. It was found that more heterogeneous distribution of the fault strength give smaller p and larger b -values. The recurrence of major shocks, particularly of very large shocks with high stress drop, is often preceded by a completely silent period of activity or very low activity with a small number of foreshocks. The major shocks take place successively in adjacent unruptured regions and sometimes show slow-speed migrations. These results provide explanations to various observations of earthquake sequences.  相似文献   
359.
Subsurface temperature is affected by heat advection due to groundwater flow and surface temperature changes. To evaluate their effects, it was implemented the measurements of temperature-depth profile (T-D profile) and the continuous monitoring of soil temperature in the southern part of Kamchatka which has not affected by human activity. Additionally, stable isotopic compositions of surface water and groundwater were analyzed. T-D profile and stable isotopic compositions show groundwater flow system is differ from the shallow aquifer to the deep aquifer. In the shallow aquifer, T-D profile suggests the existence of upward groundwater flux. On the other hand, the annual variation of soil temperature is divided into the large variation period (VP) and the stable period (SP) by the magnitude of daily and seasonal variation. VP and SP correspond to the summer and the winter season, respectively, and it considers that the difference between VP and SP is caused by the effect of snow cover. Therefore, the T-D profile is affected by not only upward groundwater flux but also the surface warming particularly in the summer season (VP).  相似文献   
360.
Most of the slope failure disasters in a humid area such as that of Japan are caused by heavy rain. However, even for the case of heavy rainfall that occurs once in every 10 years, total area of slope failures seldom exceeds 10% of a watershed. From this background, we focused on the vein-like groundwater flows that increase pore-water pressure, and clarified the relationship between distributions of slope failures and groundwater veins. In this study, a 1-m-depth ground temperature survey and water-chemistry analyses at springs and boreholes were conducted in Zentoku area of Shikoku Island, southwestern Japan, to grasp the distribution of groundwater veins and their sources. Subsequently, slope-stability was analyzed to investigate the relationship between groundwater veins and slope failures at study sites. These results lead to the following conclusions: The slope failures appear to concentrate around shallow groundwater veins and groundwater veins rising from deep layers. This means that slope failures caused by these groundwater veins in addition to rainfall. Two types of groundwater originate in the deep layers: one has short storage time as indicated by the fact that dissolved substances are low; the other is stored for a lengthy period as noted by a high concentration of dissolved substances. By combining the results of stability analyses and distribution of groundwater veins, it is suggested that prediction of zones with high potential for slope failure can be more accurate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号