首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24404篇
  免费   171篇
  国内免费   916篇
测绘学   1410篇
大气科学   1977篇
地球物理   4500篇
地质学   11587篇
海洋学   1005篇
天文学   1631篇
综合类   2161篇
自然地理   1220篇
  2020年   1篇
  2018年   4761篇
  2017年   4037篇
  2016年   2578篇
  2015年   233篇
  2014年   80篇
  2013年   24篇
  2012年   988篇
  2011年   2728篇
  2010年   2014篇
  2009年   2310篇
  2008年   1889篇
  2007年   2360篇
  2006年   52篇
  2005年   196篇
  2004年   404篇
  2003年   409篇
  2002年   249篇
  2001年   47篇
  2000年   51篇
  1999年   13篇
  1998年   21篇
  1981年   21篇
  1980年   19篇
  1976年   6篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
521.
Tidal current energy is renewable and sustainable, which is a promising alternative energy resource for the future electricity supply. The straight-bladed vertical-axis turbine is regarded as a useful tool to capture the tidal current energy especially under low-speed conditions. A 2D unsteady numerical model based on Ansys-Fluent 12.0 is established to conduct the numerical simulation, which is validated by the corresponding experimental data. For the unsteady calculations, the SST model, 2×10~5 and 0.01 s are selected as the proper turbulence model, mesh number, and time step, respectively. Detailed contours of the velocity distributions around the rotor blade foils have been provided for a flow field analysis. The tip speed ratio(TSR) determines the azimuth angle of the appearance of the torque peak, which occurs once for a blade in a single revolution. It is also found that simply increasing the incident flow velocity could not improve the turbine performance accordingly. The peaks of the averaged power and torque coefficients appear at TSRs of 2.1 and 1.8, respectively. Furthermore, several shapes of the duct augmentation are proposed to improve the turbine performance by contracting the flow path gradually from the open mouth of the duct to the rotor. The duct augmentation can significantly enhance the power and torque output. Furthermore, the elliptic shape enables the best performance of the turbine. The numerical results prove the capability of the present 2D model for the unsteady hydrodynamics and an operating performance analysis of the vertical tidal stream turbine.  相似文献   
522.
The sensitivity of the global atmospheric and oceanic response to sea surface temperature anomaly (SSTA) throughout the South China Sea (SCS) is investigated using the Fast Ocean-Atmosphere Model (FOAM). Forced by a warming SST, the experiment explicitly demonstrates that the responses of surface air temperature (SAT) and SST exhibit positive anomalous center over SCS and negative anomalous center over the Northern Pacific Ocean (NPO). The atmospheric response to the warm SST anomalies is characterized by a barotropical anomaly in middle-latitude, leading to a weak subtropical high in summer and a weak Aleutian low in winter. Accordingly, Indian monsoon and eastern Asian monsoon strengthen in summer but weaken in winter as a result of wind convergence owing to the warm SST. It is worth noting that the abnormal signals propagate poleward and eastward away in the form of Rossby Waves from the forcing region, which induces high pressure anomaly. Owing to action of the wind-driven circulation, an anomalous anti-cyclonic circulation is induced with a primary southward current in the upper ocean. An obvious cooling appears over the North Pacific, which can be explained by anomalous meridional cold advection and mixing as shown in the analysises of heat budget and other factors that affect SST.  相似文献   
523.
Current data from a moored Acoustic Doppler Current Profiler(ADCP) deployed at 69?30.155′N,169?00.654′W in the central Chukchi Sea during 2012 summertime is analyzed in the present paper.Characteristics of tidal and residual currents are ob-tained with Cosine-Lanczos filter and cross-spectral analyses.The main achievements are as follows:1) Along with the local inertial frequency of 12.8 h,two other peaks at ~12-h and ~10-d dominate the time series of raw velocity;2) The M_2 dominates the 6 resolved tide constituents with significant amplitude variations over depth and the ratios of current speed of this constituent to that of the total tidal current are 54% and 47% for u and v components,respectively.All the resolved tidal constituents rotate clockwise at depth with the exception of MM and O1.The constituents of M_2 and S_2 with the largest major semi-axes are similar in eccentricity and orientation at deeper levels;3) The maximum of residual currents varies in a range of 20–30 cms~(-1) over depth and the current with lower velocities flow more true north with smaller magnitudes compared to the current in surface layer.The ~10 d fluctuation of residual current is found throughout the water column and attributed to the response of current to the local wind forcing,with an approximate 1.4 d lag-time at the surface level and occurring several hours later in the lower layer;4) Mean residual currents flow toward the north with the magnitudes smaller than 7 cms~(-1) in a general agreement with previous studies,which suggests a relatively weaker but stable northward flow indeed exists in the central Chukchi Sea.  相似文献   
524.
Air guns are important sources for marine seismic exploration. Far-field wavelet of air gun arrays, as a necessary parameter for pre-stack processing and source models, plays an important role during marine seismic data processing and interpretation. When an air gun fires, it generates a series of air bubbles. Similar to onshore seismic exploration, the water forms a plastic fluid near the bubble; the farther the air gun is located from the measurement, the more steady and more accurately represented the wavelet will be. In practice, hydrophones should be placed more than 100 m from the air gun; however, traditional seismic cables cannot meet this requirement. On the other hand, vertical cables provide a viable solution to this problem. This study uses a vertical cable to receive wavelets from 38 air guns and data are collected offshore Southeast Qiong, where the water depth is over 1000 m. In this study, the wavelets measured using this technique coincide very well with the simulated wavelets and can therefore represent the real shape of the wavelets. This experiment fills a technology gap in China.  相似文献   
525.
An innovative mode of groundwater recharge to a buried esker aquifer is considered. The current conceptual model affords a natural safeguard to underlying aquifers from the overlying muds. A hypothesis of groundwater recharge to a buried esker aquifer via preferential pathways across its overlying muds is tested here by heuristic numerical one-dimensional and two-dimensional modeling simulations. The hypothesis has been tested against two other conventionally accepted scenarios involving: (1) distal esker outcrop areas and (2) remote shallow-bedrock recharge areas. The main evidence comes from documented recharge pressure pulses in the overlying mud aquitard and in the underlying esker hydraulic-head time series for the Vars-Winchester esker aquifer in Eastern Ontario, Canada. These perturbations to the potentiometric surface are believed to be the aquifer response to recharge events. The migration rate of these pressure pulses is directly related to the hydraulic diffusivity of the formation. The measured response time and response amplitude between singular radar precipitation events and well hydrographs constituted the heuristic model calibration targets. The main evidence also includes mud-layering deformation (water escape features) which was observed in seismic surveys of the over-esker muds. These disturbed stratigraphic elements provide a realistic mechanism for migrating water to transit through the muds. The effective hydraulic conductivities of these preferential pathways in the muds were estimated to be between 2?×?10?6 and 7?×?10?6 m/s. The implications of these findings relate to the alleged natural safeguard of these overlying muds.  相似文献   
526.
Blasting is a widely used technique for rock fragmentation in opencast mines and tunneling projects. Ground vibration is one of the most environmental effects produced by blasting operation. Therefore, the proper prediction of blast-induced ground vibrations is essential to identify safety area of blasting. This paper presents a predictive model based on gene expression programming (GEP) for estimating ground vibration produced by blasting operations conducted in a granite quarry, Malaysia. To achieve this aim, a total number of 102 blasting operations were investigated and relevant blasting parameters were measured. Furthermore, the most influential parameters on ground vibration, i.e., burden-to-spacing ratio, hole depth, stemming, powder factor, maximum charge per delay, and the distance from the blast face were considered and utilized to construct the GEP model. In order to show the capability of GEP model in estimating ground vibration, nonlinear multiple regression (NLMR) technique was also performed using the same datasets. The results demonstrated that the proposed model is able to predict blast-induced ground vibration more accurately than other developed technique. Coefficient of determination values of 0.914 and 0.874 for training and testing datasets of GEP model, respectively show superiority of this model in predicting ground vibration, while these values were obtained as 0.829 and 0.790 for NLMR model.  相似文献   
527.
Human-machine interactive visiting and fixed-route visiting are currently the main roaming modes in digital three-dimensional (3D) scenes. However, in general, when a person visits an attraction area, s/he does not follow a fixed path, but instead wander about according to his/her interests. Here, we propose a new roaming mode, called autonomic visiting. That is, in a digital 3D scene, a user selects several interest spots, then a route connecting these spots can be automatically determined and 3D scene can be seen along this route. This study presents a technical approach that enables the realization of autonomic visiting in 3D scenes. Firstly, Delaunay triangular meshes for the terrain in 3D scene are established. Secondly, a plane-growth algorithm and a line-connection algorithm are introduced to automatically mend the broken parts of these triangular meshes. Thirdly, the triangular meshes are then merged and differently weighted according to different layers. Finally, a progress-zone transmission algorithm is presented to optimal the shortest route, which is derived from A-Star (A*) algorithm. Digital 3D campus of Nanjing University, China, is taken as the experimental materials. The experimental results prove the effect of the proposed approach.  相似文献   
528.
For numerical studies of geotechnical structures under earthquake loading, aiming to examine a possible failure due to liquefaction, using a sophisticated constitutive model for the soil is indispensable. Such a model must adequately describe the material response to a cyclic loading under constant volume (undrained) conditions, amongst others the relaxation of effective stress (pore pressure accumulation) or the effective stress loops repeatedly passed through after a sufficiently large number of cycles (cyclic mobility, stress attractors). The soil behaviour under undrained cyclic loading is manifold, depending on the initial conditions (e.g. density, fabric, effective mean pressure, stress ratio) and the load characteristics (e.g. amplitude of the cycles, application of stress or strain cycles). In order to develop, calibrate and verify a constitutive model with focus to undrained cyclic loading, the data from high-quality laboratory tests comprising a variety of initial conditions and load characteristics are necessary. The purpose of these two companion papers was to provide such database collected for a fine sand. The database consists of numerous undrained cyclic triaxial tests with stress or strain cycles applied to samples consolidated isotropically or anisotropically. Monotonic triaxial tests with drained or undrained conditions have also been performed. Furthermore, drained triaxial, oedometric or isotropic compression tests with several un- and reloading cycles are presented. Part I concentrates on the triaxial tests with monotonic loading or stress cycles. All test data presented herein will be available from the homepage of the first author. As an example of the examination of an existing constitutive model, the experimental data are compared to element test simulations using hypoplasticity with intergranular strain.  相似文献   
529.
Sand compaction piles (SCPs) have been widely applied to the construction on the soft ground for decades, due to not only the acceleration of the consolidation but also the enhancement of strength and stiffness of ground. However, physical behaviors of SCP-improved ground have not been clearly unveiled due to complex response of two distinct materials, compacted sand and soft clay, which are having quite different mechanical characteristics. Therefore, in this study, the mechanical characteristics of SCP composite ground were investigated via triaxial compression tests on SCP-inserted clay specimens. Tests were performed elaborately with four specimens with different replacement ratios. Based on the comparisons of consolidation and shearing behaviors of tested SCP-inserted clay specimens, the SCP effects on the stiffness and strength are also investigated. Even though the SCP-inserted clay specimens show stronger and stiffer behaviors than clay-only specimens, the effects vary on strength, stiffness, and volume change with regard to the applied replacement ratios.  相似文献   
530.
Deep saline aquifers in sedimentary basins are considered to have the greatest potential for CO2 geological storage in order to reduce carbon emissions. CO2 injected into a saline sandstone aquifer tends to migrate upwards toward the caprock because the density of the supercritical CO2 phase is lower than that of formation water. The accumulated CO2 in the upper portions of the reservoir gradually dissolves into brine, lowers pH and changes the aqueous complexation, whereby induces mineral alteration. In turn, the mineralogical composition could impose significant effects on the evolution of solution, further on the mineralized CO2. The high density of aqueous phase will then move downward due to gravity, give rise to “convective mixing,” which facilitate the transformation of CO2 from the supercritical phase to the aqueous phase and then to the solid phase. In order to determine the impacts of mineralogical compositions on trapping amounts in different mechanisms for CO2 geological storage, a 2D radial model was developed. The mineralogical composition for the base case was taken from a deep saline formation of the Ordos Basin, China. Three additional models with varying mineralogical compositions were carried out. Results indicate that the mineralogical composition had very obvious effects on different CO2 trapping mechanisms. Specific to our cases, the dissolution of chlorite provided Mg2+ and Fe2+ for the formation of secondary carbonate minerals (ankerite, siderite and magnesite). When chlorite was absent in the saline aquifer, the dominant secondary carbon sequestration mineral was dawsonite, and the amount of CO2 mineral trapping increased with an increase in the concentration of chlorite. After 3000 years, 69.08, 76.93, 83.52 and 87.24 % of the injected CO2 can be trapped in the solid (mineral) phase, 16.05, 11.86, 8.82 and 6.99 % in the aqueous phase, and 14.87, 11.21, 7.66 and 5.77 % in the gas phase for Case 1 through 4, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号