首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   821篇
  免费   16篇
  国内免费   20篇
测绘学   3篇
大气科学   48篇
地球物理   205篇
地质学   228篇
海洋学   174篇
天文学   142篇
综合类   10篇
自然地理   47篇
  2021年   10篇
  2019年   13篇
  2018年   13篇
  2017年   16篇
  2016年   17篇
  2015年   11篇
  2014年   28篇
  2013年   19篇
  2012年   26篇
  2011年   39篇
  2010年   35篇
  2009年   42篇
  2008年   37篇
  2007年   35篇
  2006年   32篇
  2005年   37篇
  2004年   26篇
  2003年   20篇
  2002年   30篇
  2001年   19篇
  2000年   26篇
  1999年   15篇
  1998年   18篇
  1997年   14篇
  1996年   9篇
  1995年   15篇
  1994年   7篇
  1993年   11篇
  1992年   15篇
  1991年   7篇
  1990年   12篇
  1989年   11篇
  1988年   10篇
  1987年   14篇
  1986年   6篇
  1985年   12篇
  1984年   9篇
  1983年   13篇
  1982年   10篇
  1981年   12篇
  1980年   17篇
  1979年   11篇
  1978年   12篇
  1977年   7篇
  1976年   6篇
  1975年   7篇
  1974年   7篇
  1973年   6篇
  1972年   6篇
  1970年   5篇
排序方式: 共有857条查询结果,搜索用时 125 毫秒
91.
92.
Abstract— Outside the Earth's atmosphere, silica aerogel is one of the best materials to capture finegrained extraterrestrial particles in impacts at hypervelocities. Because silica aerogel is a superior insulator, captured grains are inevitably influenced by frictional heat. Therefore, we performed laboratory simulations of hypervelocity capture by using light‐gas guns to impact into aerogels finegrained powders of serpentine, cronstedtite, and Murchison CM2 meteorite. The samples were shot at >6 km s?1 similar to the flyby speed at comet P/Wild‐2 in the Stardust mission. We investigated mineralogical changes of each captured particle by using synchrotron radiation X‐ray diffraction (SR‐XRD), transmission electron microscope (TEM), and field emission scanning electron microscope (FE‐SEM). SR‐XRD of each grain showed that the majority of the bulk grains keep their original mineralogy. In particular, SR‐XRD and TEM investigations clearly exemplified the presence of tochilinite whose decomposition temperature is about 300 °C in the interior of the captured Murchison powder. However, TEM study of these grains also revealed that all the samples experienced melting and vesiculation on the surface. The cronstedtite and the Murchison meteorite powder show remarkable fracturing, disaggregation, melting, and vesiculation. Steep thermal gradients, about 2500 °C/μm were estimated near the surface of the grains (<2 μm thick) by TEM observation. Our data suggests that the interior of >4 μm across residual grains containing abundant materials that inhibit temperature rise would have not experienced >300 °C at the center.  相似文献   
93.
In the 50 years since the advent of X-ray astronomy there have been many scientific advances due to the development of new experimental techniques for detecting and characterising X-rays. Observations of X-ray polarisation have, however, not undergone a similar development. This is a shortcoming since a plethora of open questions related to the nature of X-ray sources could be resolved through measurements of the linear polarisation of emitted X-rays. The PoGOLite Pathfinder is a balloon-borne hard X-ray polarimeter operating in the 25-240 keV energy band from a stabilised observation platform. Polarisation is determined using coincident energy deposits in a segmented array of plastic scintillators surrounded by a BGO anticoincidence system and a polyethylene neutron shield. The PoGOLite Pathfinder was launched from the SSC Esrange Space Centre in July 2013. A near-circumpolar flight was achieved with a duration of approximately two weeks. The flight performance of the Pathfinder design is discussed for the three Crab observations conducted. The signal-to-background ratio for the observations is shown to be 0.25 ±0.03 and the Minimum Detectable Polarisation (99 % C.L.) is (28.4 ±2.2) %. A strategy for the continuation of the PoGOLite programme is outlined based on experience gained during the 2013 maiden flight.  相似文献   
94.
Under perturbations from outer bodies, the Earth experiences changes of its angular momentum axis, figure axis and rotational axis. In the theory of the rigid Earth, in addition to the precession and nutation of the angular momentum axis given by the Poisson terms, both the figure axis and the rotational axis suffer forced deviation from the angular momentum axis. This deviation is expressed by the so-called Oppolzer terms describing separation of the averaged figure axis, called CIP (Celestial Intermediate Pole) or CEP (Celestial Ephemeris Pole), and the mathematically defined rotational axis, from the angular momentum axis. The CIP is the rotational axis in a frame subject to both precession and nutation, while the mathematical rotational axis is that in the inertial (non-rotating) frame. We investigate, kinematically, the origin of the separation between these two axes—both for the rigid Earth and an elastic Earth. In the case of an elastic Earth perturbed by the same outer bodies, there appear further deviations of the figure and rotational axes from the angular momentum axis. These deviations, though similar to the Oppolzer terms in the rigid Earth, are produced by quite a different physical mechanism. Analysing this mechanism, we derive an expression for the Oppolzer-like terms in an elastic Earth. From this expression we demonstrate that, under a certain approximation (in neglect of the motion of the perturbing outer bodies), the sum of the direct and convective perturbations of the spin axis coincides with the direct perturbation of the figure axis. This equality, which is approximate, gets violated when the motion of the outer bodies is taken into account.  相似文献   
95.
It is not clear how trans-equatorial loop systems (TLSs) are formed, although they have been observed often with Yohkoh/SXT. We focus here on a TLS that appeared on 27 May 1998. Yokoyama and Masuda (Solar Phys. 254, 285, 2009) proposed a new scenario for the formation mechanism of the TLS. In this scenario, they pointed out the importance of magnetic interaction between an active region and a coronal hole to make “strong-seed magnetic fields” before a transient (bright and short-lived) trans-equatorial loop was created. The main aims of this study are to verify the scenario and to make the TLS formation mechanism clear, based on observational data. Yohkoh/SXT images, SOHO/MDI magnetograph data, and Kitt Peak coronal-hole maps were mainly used for our analyses. We investigated the TLS in detail from the time that there were no signatures of the TLS to its clear appearance. The following results are obtained: i) an active region emerged in the vicinity of a coronal-hole boundary, ii) the coronal-hole boundary retreated during the period when the active region was developing, iii) temporal variations of soft X-ray intensities were roughly synchronized between the coronal-hole boundary and a trans-equatorial region, and iv) new closed loops were observed in soft X-rays clearly at the coronal-hole boundary. Since i), ii), iii), and iv) are just what we expect in the scenario of YM2009, the scenario found support. We conclude that the TLS was originating with large-scale magnetic fields of the coronal-hole boundary through magnetic reconnection between the active region and a coronal hole.  相似文献   
96.
Accurate knowledge of the extent of biogenic opal preservation in marine sediment cores is important for paleoceanographic reconstructions. The alkaline leaching method is widely employed for %biogenic opal analysis due to its ease and speed. In this study, a revised method for measuring %biogenic opal in sediment from arctic coring expedition samples was suggested. The studied middle Eocene sediments from the central Arctic Ocean presented a problem in insufficiently leaching biogenic opal with a Na2CO3 solution. Based on XRD analysis, it was suggested that such an alkaline resistance results from slight diagenesis of biogenic opal. In order to solve this problem, an alkaline leaching method utilizing a 2 M NaOH solution was suggested for the accurate measurement of %biogenic opal in the Eocene sediments from the central Arctic. Furthermore, dissolution rates from lithogenic matter by NaOH solution were measured in order to correct the %biogenic opal values.  相似文献   
97.
The conditions under which rear-arc magmas are generated were estimated using primary basalts from the Sannome-gata volcano, located in the rear of the NE Japan arc. Scoriae from the volcano occur with abundant crustal and mantle xenoliths, suggesting that the magma ascended rapidly from the upper mantle. The scoriae show significant variations in their whole-rock compositions (7.9–11.1 wt% MgO). High-MgO scoriae (MgO > ~9.5 wt%) have mostly homogeneous 87Sr/86Sr ratios (0.70318–0.70320), whereas low-MgO scoriae (MgO < ~9 wt%) have higher 87Sr/86Sr ratios (>0.70327); ratios tend to increase with decreasing MgO content. The high-MgO scoriae are aphyric, containing ~5 vol% olivine microphenocrysts with Mg# [100 × Mg/(Mg + Fe2+)] of up to 90. In contrast, the low-MgO scoriae have crustal xenocrysts of plagioclase, alkali feldspar, and quartz, and the mineralogic modes correlate negatively with whole-rock MgO content. On the basis of these observations, it is inferred that the high-MgO scoriae represent primary or near-primary melts, while the low-MgO scoriae underwent considerable interaction with the crust. Using thermodynamic analysis of the observed petrological features of the high-MgO scoriae, the eruption temperature of the magmas was constrained to 1,160–1,220 °C. Given that the source mantle was depleted MORB-source mantle, the primary magma was plausibly generated by ~7 % melting of a garnet-bearing spinel peridotite; taking this into consideration, and considering the constraints of multi-component thermodynamics, we estimated that the primary Sannome-gata magma was generated in the source mantle with 0.5–0.6 wt% H2O at 1,220–1,230 °C and at ~1.8 GPa, and that the H2O content of the primary magma was 6–7 wt%. The rear-arc Sannome-gata magma was generated by a lower degree of melting of the mantle at greater depths and lower temperatures than the frontal-arc magma from the Iwate volcano, which was also estimated to be generated by ~15 % melting of the source mantle with 0.6–0.7 wt% H2O at ~1,250 °C and at ~1.3 GPa.  相似文献   
98.
There has been limited previous research about Holocene climate variability in the Indian Sector of the Southern Ocean. Here we examine centennial‐scale changes in diatom assemblages and stable isotopic ratios since 10 000 cal a BP in a high‐accumulation‐rate sediment core from the Conrad Rise. Although abundances of dominant diatom taxa (Fragilariopsis kerguelensis and Thalassiothrix antarctica) are comparatively constant, relative abundances of secondary taxa fluctuate. Before c. 9900 cal a BP, winter sea‐ice and cold water covered the Conrad Rise. Following deglaciation the sea‐ice retreated from the Conrad Rise, lagging that of the Atlantic and eastern Indian Sectors by about 1500 a. The Polar Front moved southward during the early Holocene optimum and north Antarctic Zone waters covered the Conrad Rise for about 650 a. After 9300 cal a BP, solar insolation strongly influenced sea surface temperature and primary productivity in the Southern Ocean. In the high‐latitude Indian Sector, productivity increased 1500 a after the onset of late Holocene neoglaciation. Periodic δ18O and cold‐water diatom taxa spikes (at intervals of 200 and 300–500 a, respectively) occurred after 9300 cal a BP, probably associated with solar activity. Fluctuations in short‐term sea surface temperature and cold‐water taxa are synchronous with changes in δD observed in an east Antarctic ice core. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
99.
100.
Small body surface gravity fields via spherical harmonic expansions   总被引:1,自引:0,他引:1  
Conventional gravity field expressions are derived from Laplace’s equation, the result being the spherical harmonic gravity field. This gravity field is said to be the exterior spherical harmonic gravity field, as its convergence region is outside the Brillouin (i.e., circumscribing) sphere of the body. In contrast, there exists its counterpart called the interior spherical harmonic gravity field for which the convergence region lies within the interior Brillouin sphere that is not the same as the exterior Brillouin sphere. Thus, the exterior spherical harmonic gravity field cannot model the gravitation within the exterior Brillouin sphere except in some special cases, and the interior spherical harmonic gravity field cannot model the gravitation outside the interior Brillouin sphere. In this paper, we will discuss two types of other spherical harmonic gravity fields that bridge the null space of the exterior/interior gravity field expressions by solving Poisson’s equation. These two gravity fields are obtained by assuming the form of Helmholtz’s equation to Poisson’s equation. This method renders the gravitational potentials as functions of spherical Bessel functions and spherical harmonic coefficients. We refer to these gravity fields as the interior/exterior spherical Bessel gravity fields and study their characteristics. The interior spherical Bessel gravity field is investigated in detail for proximity operation purposes around small primitive bodies. Particularly, we apply the theory to asteroids Bennu (formerly 1999 RQ36) and Castalia to quantify its performance around both nearly spheroidal and contact-binary asteroids, respectively. Furthermore, comparisons between the exterior gravity field, interior gravity field, interior spherical Bessel gravity field, and polyhedral gravity field are made and recommendations are given in order to aid planning of proximity operations for future small body missions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号