首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   223篇
  免费   8篇
  国内免费   8篇
测绘学   3篇
大气科学   62篇
地球物理   68篇
地质学   64篇
海洋学   19篇
天文学   9篇
综合类   3篇
自然地理   11篇
  2023年   2篇
  2022年   6篇
  2021年   5篇
  2020年   9篇
  2019年   6篇
  2018年   11篇
  2017年   12篇
  2016年   18篇
  2015年   14篇
  2014年   17篇
  2013年   15篇
  2012年   14篇
  2011年   18篇
  2010年   15篇
  2009年   15篇
  2008年   10篇
  2007年   5篇
  2006年   4篇
  2005年   5篇
  2004年   5篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1982年   3篇
  1980年   1篇
  1979年   1篇
  1964年   1篇
排序方式: 共有239条查询结果,搜索用时 62 毫秒
91.
Summary  A micromechanics-based model, able to quantify the effect of various parameters on the complete stress–strain relationship, is described. The closed-form explicit expression for the complete stress–strain relationship of a rock material containing an echelon cracks arrangement subjected to compressive loading is obtained. The complete stress–strain relationship including the stages of linear elasticity, non-linear hardening and strain softening is established. The results show that the complete stress–strain relationship and the strength of rock with echelon cracks depend on the crack interface friction coefficient, the sliding crack spacing, the perpendicular distance between the two adjacent rows, the fracture toughness of rock material and orientation of the cracks. The present model is used to evaluate the complete stress–strain relationship and strength for crack-weakened rock at the underground cavern complex of the Ertan Hydroelectric Project. The predicted strength is in agreement with that obtained by the Hoek–Brown criterion. The numerical results obtained with the complete stress–strain relationship seem to be in good agreement with the measured values. Author’s address: Xiao-Ping Zhou, School of Civil Engineering, Chongqing University, 443002 Chongqing, P.R. China  相似文献   
92.
In the past two decades, the regional climate in China has undergone significant change, resulting in crop yield reduction and complete failure. The goal of this study is to detect the variation of temperature and precipitation for different growth periods of maize and assess their impact on phenology. The daily meteorological data in the Midwest of Jilin Province during 1960–2014 were used in the study. The ensemble empirical mode decomposition method was adopted to analyze the non-linear trend and fluctuation in temperature and precipitation, and the sensitivity of the length of the maize growth period to temperature and precipitation was analyzed by the wavelet cross-transformation method. The results show that the trends of temperature and precipitation change are non-linear for different growth periods of maize, and the average temperature in the sowing-jointing stage was different from that in the other growth stages, showing a slight decrease trend, while the variation amplitude of maximum temperature is smaller than that of the minimum temperature. This indicates that the temperature difference between day and night shows a gradually decreasing trend. Precipitation in the growth period also showed a decreasing non-linear trend, while the inter-annual variability with period of quasi-3-year and quasi-6-year dominated the variation of temperature and precipitation. The whole growth period was shortened by 10.7 days, and the sowing date was advanced by approximately 11 days. We also found that there was a significant resonance period among temperature, precipitation, and phenology. Overall, a negative correlation between phenology and temperature is evident, while a positive correlation with precipitation is exhibited. The results illustrate that the climate suitability for maize has reduced over the past decades.  相似文献   
93.
A new observation processing system, the Korea Institute of Atmospheric Prediction Systems (KIAPS) Package for Observation Processing (KPOP), has been developed to provide optimal observation datasets to the data assimilation (DA) system for the Korean Integrated Model, KIM. This paper presents the KPOP’s conceptual design, how the principal modules have been developed, and some of their preliminary results. Currently, the KPOP is capable of processing almost all observation types used by the Korea Meteorological Administration (KMA) and some new observation types that have a positive impact in other operational centers. We have developed an adaptive bias correction (BC) method that only uses the background of the analysis time and selects the best observations through the consecutive iteration of BC and quality control (QC); it has been verified that this method will be the best suited for the KIAPS DA system until the development of variational BC (VarBC) has been completed. The requirement of considering the radiosonde balloon drift in the DA according to the increase of spatial resolution of the NWP model was accounted for using a balloon drift estimation method that considers the pressure difference and wind speed; thus the distance error was less than 1% in the sample test. Some kind of widely used methods were tested for height adjustment of the SURFACE observation, and a new method for temperature adjustment was outlined that used the correlation between temperature and relative humidity. In addition, three types of map projection were compared: the cubed-sphere (CS), equidistance (ED), and equirectangular (ER) projection for thinning. Data denial experiments were conducted to investigate how the KPOP affected the quality of the analysis fields in the three-dimensional variational data assimilation system (3D-Var). Qualified observations produced by the KPOP had a positive impact by reducing the analysis error.  相似文献   
94.
95.
To assist the government of Vietnam in its efforts to better understand the impacts of climate change and prioritise its adaptation measures, dynamically downscaled climate change projections were produced across Vietnam. Two Regional Climate Models (RCMs) were used: CSIRO’s variable-resolution Conformal-Cubic Atmospheric Model (CCAM) and the limited-area model Regional Climate Model system version 4.2 (RegCM4.2). First, global CCAM simulations were completed using bias- and variance-corrected sea surface temperatures as well as sea ice concentrations from six Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models. This approach is different from other downscaling approaches as it does not use any atmospheric fields from the GCMs. The global CCAM simulations were then further downscaled to 10 km using CCAM and to 20 km using RegCM4.2. Evaluations of temperature and precipitation for the current climate (1980-2000) were completed using station data as well as various gridded observational datasets. The RCMs were able to reproduce reasonably well most of the important characteristics of observed spatial patterns and annual cycles of temperature. Average and minimum temperatures were well simulated (biases generally less than 1oC), while maximum temperatures had biases of around 1oC. For precipitation, although the RCMs captured the annual cycle, RegCM4.2 was too dry in Oct.-Nov. (-60% bias), while CCAM was too wet in Dec.- Mar. (130% bias). Both models were too dry in summer and too wet in winter (especially in northern Vietnam). The ability of the ensemble simulations to capture current climate increases confidence in the simulations of future climate.  相似文献   
96.
This paper focuses on the modelling of mixed-mode fracture using the conventional smoothed particle hydrodynamics (SPH) method and a mixed-mode cohesive fracture law embedded in the particles. The combination of conventional SPH and a mixed-mode cohesive model allows capturing fracture and separation under various loading conditions efficiently. The key advantage of this framework is its capability to represent complex fracture geometries by a set of cracked SPH particles, each of which can possess its own mixed-mode cohesive fracture with arbitrary orientations. Therefore, this can naturally capture complex fracture patterns without any predefined fracture topologies. Because a characteristic length scale related to the size of the fracture process zone is incorporated in the constitutive formulation, the proposed approach is independent from the spatial discretisation of the computational domain (or mesh independent). Furthermore, the anisotropic fracture responses of materials can be naturally captured thanks to the orientation of the fracture process zone embedded at the particle level. The performance of the proposed approach demonstrates its potentials in modelling mixed-mode fracture of rocks and similar quasi-brittle materials.  相似文献   
97.
98.
99.
Groundwater responses at 15 monitoring wells on Jeju Island were observed in relation to the magnitude 9.0 Tohoku Earthquake off the Pacific coast of Honshu, Japan, on 11 March 2011, at 14:46:23 h local time (05:46:24 h UTC time). In coastal areas, the groundwater level responses to the earthquake were oscillatory at 12 wells, and the range of the maximum groundwater level changes was 3–192.4 cm. The response durations were approximately 1–62 min. The relationship between the maximum groundwater level changes and the response durations displayed a high correlation coefficient (r = 0.81). Groundwater temperature changes were also observed at 7 of 12 wells 3–10 min after the seismic wave arrived, and the range was from 0.01 °C to 1.20 °C. In mid‐elevation areas, the groundwater level changes appeared in three different forms: oscillatory, spiky and persistent. The groundwater temperature changes were also observed at two wells. One indicated decreasing and recovering temperatures, and the other exhibited rising and persistent temperatures. The primary temperature changes occurred 5–6 min after the earthquake and 2–3 min after the seismic wave arrived. In addition, the electrical conductivities at the depth of the transition zone were monitored, and the responses to the earthquake appeared at all three wells. Although the electrical conductivity and temperature changes were not well understood, groundwater inflow and mixing were likely caused by the earthquake, and the responses were various and site specific. The responses to the earthquake were closely related to the hydrogeological characteristics at each monitoring well, and a more detailed hydrogeological characterization is needed to understand the mechanisms related to earthquakes in general. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
100.
Spatial and temporal variations in a trichloroethylene (TCE) plume at an industrial complex in Wonju, Korea, were examined based on hydrogeological data and seven rounds of groundwater quality data collected over a year. The site has considerable vertical heterogeneities; the top layer of soil is covered by impermeable paving material at several locations, followed by a series of reclaimed or residual soil layers, and with weathered rocks to the crystalline biotite granite at the bottom. Areal heterogeneity in the surface conditions plays an important role in controlling groundwater recharge. The heterogeneity structure is influenced by complex surface conditions paved with asphalt and concrete. Owing to the presence of limited recharge area and concentrated summer precipitation events, the effects of seasonal variations on groundwater hydraulics tend to diminish with distance from the recharge area. This result was established by analysing the influence of the contrasting surface recharge conditions between the near‐source zone and the far zone, and the seasonally concentrated precipitation on the transport patterns of a TCE plume. In addition, variations in the plume's downstream contaminant flux levels were also analysed along a transect line near the source zone. The results show that the general tendency of the TCE plume contaminant concentration and mass discharges were reproducible if we account for seasonal recharge variations and the associated changes in the groundwater level. During recharge events, the TCE concentration variations appear to be influenced by leaching of the residual dense non‐aqueous‐phase liquid (DNAPL) TCE trapped in the unsaturated zone. This result shows that seasonal variations in contaminant plume near the source zone is inevitable at this site, and that these variations indicate the presence of residual DNAPL at or above the water table, at least in some isolated locations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号