首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   322篇
  免费   15篇
  国内免费   2篇
测绘学   5篇
大气科学   7篇
地球物理   47篇
地质学   138篇
海洋学   16篇
天文学   94篇
自然地理   32篇
  2021年   4篇
  2020年   5篇
  2019年   2篇
  2018年   7篇
  2017年   9篇
  2016年   10篇
  2015年   6篇
  2014年   7篇
  2013年   15篇
  2012年   11篇
  2011年   10篇
  2010年   12篇
  2009年   16篇
  2008年   15篇
  2007年   12篇
  2006年   11篇
  2005年   10篇
  2004年   5篇
  2003年   6篇
  2002年   12篇
  2001年   4篇
  2000年   8篇
  1999年   12篇
  1998年   9篇
  1997年   5篇
  1996年   10篇
  1995年   5篇
  1994年   7篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1986年   5篇
  1985年   8篇
  1984年   7篇
  1983年   4篇
  1982年   5篇
  1981年   7篇
  1980年   8篇
  1979年   2篇
  1978年   4篇
  1977年   5篇
  1976年   3篇
  1975年   4篇
  1974年   2篇
  1973年   5篇
  1968年   2篇
  1934年   1篇
  1882年   1篇
  1877年   2篇
排序方式: 共有339条查询结果,搜索用时 93 毫秒
201.
Fluvial channel geometry classification schemes are commonly restricted in relation to the scale at which the study took place, often due to outcrop limitations or the need to conduct small‐scale detailed studies. A number of classification schemes are present in the literature; however, there is often limited consistency between them, making application difficult. The aim of this study is to address this key problem by describing channel body geometries across a depositional basin to ensure that a wide range of architectures are documented. This was achieved by studying 28 locations over 4000 m of vertical succession in Palaeocene‐aged and Early Eocene‐aged deposits within the Bighorn Basin, Wyoming, USA. Five different channel body geometries have been defined based on the external geometric form, and internal arrangement and nature of storey contacts. These include the massive channel body geometry, semi‐amalgamated channel body geometry, internally amalgamated channel body geometry and offset stacked channel body geometry, which are considered to be subdivisions of the sheet geometry of many other classifications. An isolated channel body geometry has also been recognized alongside splay channel and sheet sandstone geometries in the floodplain facies associations. Field evidence, including the stacking style of storey surfaces, suggests that the different geometries form a continuum. The nature and degree of amalgamation at the storey scale are important in producing the different geometries and are related to the degree of channel migration. It is speculated that this is the result of differences in sediment supply and available accommodation. In contrast to previous schemes, the classification scheme presented here recognizes the importance of transitional geometries. This geometrical range has been recognized because of the basin‐scale nature of the study.  相似文献   
202.
五大连池火山群喷气锥成因机制探讨   总被引:1,自引:0,他引:1  
五大连池火山群1537个喷气锥中,多数分布在火烧山熔岩流中,在水量充足的五池到四池之间的熔岩台地上,喷气锥数量集中、个体较大、发育良好。通过对五大连池火山群喷气锥的形态结构和集中分布特点进行分析,认为水蒸气在混合气体形成喷气锥中起主导作用,重力也在喷气锥形态塑造上有一定意义。含挥发分的基性岩浆溢流到在靠近水域的地区时表层冷凝固结,内部熔岩仍温度高、粘度低,与地下水作用形成火山气体和水蒸气构成的混合气体,气体冲破表层间歇溢出时,带动熔岩外掀堆叠在喷气孔周围形成喷气锥,中央保留气体多次逸出的通道形成中空结构。当气体压力不足以使熔岩从喷口溢出,喷气锥的生长停止。  相似文献   
203.
Eight species of Bryozoa, two of them new, have been noted from limestones and calcareous shales of the Lower Limestone Group from Hessilhead Quarry, Beith.  相似文献   
204.
Recent observations suggest methane in the martian atmosphere is variable on short spatial and temporal scales. However, to explain the variability by loss reactions requires production rates much larger than expected. Here, we report results of laboratory studies of methane adsorption onto JSC-Mars-1, a martian soil simulant, and suggest that this process could explain the observations. Uptake coefficient (γ) values were measured as a function of temperature using a high-vacuum Knudsen cell able to simulate martian temperature and pressure conditions. Values of γ were measured from 115 to 135 K, and the data were extrapolated to higher temperatures with more relevance to Mars. Adsorptive uptake was found to increase at lower temperatures and larger methane partial pressures. Although only sub-monolayer methane surface coverage is likely to exist under martian conditions, a very large mineral surface area is available for adsorption as atmospheric methane can diffuse meters into the regolith. As a result, significant methane may be temporarily lost to the regolith on a seasonal time scale. As this weak adsorption is fully reversible, methane will be re-released into the atmosphere when surface and subsurface temperatures rise and so no net loss of methane occurs. Heterogeneous interaction of methane with martian soil grains is the only process proposed thus far which contains both rapid methane loss and rapid methane production mechanisms and is thus fully consistent with the reported variability of methane on Mars.  相似文献   
205.
Most of the visible universe is in the highly ionised plasma state, and most of that plasma is collision-free. Three physical phenomena are responsible for nearly all of the processes that accelerate particles, transport material and energy, and mediate flows in systems as diverse as radio galaxy jets and supernovae explosions through to solar flares and planetary magnetospheres. These processes in turn result from the coupling amongst phenomena at macroscopic fluid scales, smaller ion scales, and down to electron scales. Cross-Scale, in concert with its sister mission SCOPE (to be provided by the Japan Aerospace Exploration Agency—JAXA), is dedicated to quantifying that nonlinear, time-varying coupling via the simultaneous in-situ observations of space plasmas performed by a fleet of 12 spacecraft in near-Earth orbit. Cross-Scale has been selected for the Assessment Phase of Cosmic Vision by the European Space Agency.   相似文献   
206.
The Cassini–Huygens mission, comprising the NASA Saturn Orbiter and the ESA Huygens Probe, arrived at Saturn in late June 2004. The Huygens probe descended under parachute in Titan’s atmosphere on 14 January 2005, 3 weeks after separation from the Orbiter. We discuss here the breakthroughs that the Huygens probe, in conjunction with the Cassini spacecraft, brought to Titan science. We review the achievements ESA’s Huygens probe put forward and the context in which it operated. The findings include new localized information on several aspects of Titan science: the atmospheric structure and chemical composition; the aerosols distribution and content; the surface morphology and composition at the probe’s landing site; the winds, the electrical properties, and the implications on the origin and evolution of the satellite.  相似文献   
207.
Titan, Saturn's largest moon, has a thick nitrogen/methane atmosphere. The temperature and pressure conditions in Titan's atmosphere are such that the methane vapor should condense near the tropopause to form clouds. Several ground-based measurements have observed sparse cloud-like features in Titan's atmosphere, while the Cassini mission to Saturn has provided large scale images of the clouds. However, Titan's cloud formation conditions remain poorly constrained. Heterogeneous nucleation (from the vapor phase onto a solid or liquid aerosol surface) greatly enhances cloud formation relative to homogeneous nucleation. In order to elucidate the cloud formation mechanism near the tropopause, we have performed laboratory measurements of the adsorption of methane and ethane onto solid organic particles (tholins) representative of Titan's photochemical haze. We find that monolayers of methane adsorb onto tholin particles at saturation ratios less than unity. We also find that solid methane nucleates onto the adsorbed methane at a saturation ratio of S=1.07±0.008. This implies that Titan's methane clouds should form easily. This is consistent with recent measurements of the column of methane ruling out excessive methane supersaturation. In addition, we find ethane adsorbs onto tholin particles in a metastable phase prior to nucleation. However, ethane nucleation onto the adsorbed ethane occurs at a relatively high saturation ratio of S=1.36±0.08. These findings are consistent with the recent report of polar ethane clouds in Titan's lower stratosphere.  相似文献   
208.
We present results of a simple two-dimensional model investigating the observable effects that convective motions and gravity waves can have on the condensational Venus cloud. Gravity waves have been observed in the Venus atmosphere in the form of temperature scintillations in the Magellan and Pioneer Venus occultation data. Multiple in situ probes and long-duration remote observations indicate the presence of convective motions in the Venus clouds. Dynamical studies by others have suggested that gravity waves can exist in the stable regions of the Venus atmosphere above the middle clouds and beneath the middle clouds, and likely are triggered by flow past sub-cloud plumes caused by convective overshooting. We find that a simplified treatment of convective kinematics generates variation in the Venus condensational cloud consistent with the observed variability of optical depth and brightness temperature. Specifically, we find that the downdraft regions in our simulated convective cell exhibit a decrease in cloud optical depth of around Δτ∼10. The brightness temperature ranges from about 460 K in the downdraft regions of the simulated convective cells, to about 400 K in the simulated updrafts. We also find that gravity waves launched by obstacles (such as overshooting convective plumes) near the cloud base exhibit horizontal wavelengths comparable to the separation between convective cells, and generate variations in brightness temperature that should be observable by instruments such as VIRTIS on Venus Express. However, a more robust treatment of the atmospheric dynamics is needed to address adequately these interactions between the clouds and the mesoscale dynamics.  相似文献   
209.
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号