首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   322篇
  免费   15篇
  国内免费   2篇
测绘学   5篇
大气科学   7篇
地球物理   47篇
地质学   138篇
海洋学   16篇
天文学   94篇
自然地理   32篇
  2021年   4篇
  2020年   5篇
  2019年   2篇
  2018年   7篇
  2017年   9篇
  2016年   10篇
  2015年   6篇
  2014年   7篇
  2013年   15篇
  2012年   11篇
  2011年   10篇
  2010年   12篇
  2009年   16篇
  2008年   15篇
  2007年   12篇
  2006年   11篇
  2005年   10篇
  2004年   5篇
  2003年   6篇
  2002年   12篇
  2001年   4篇
  2000年   8篇
  1999年   12篇
  1998年   9篇
  1997年   5篇
  1996年   10篇
  1995年   5篇
  1994年   7篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1986年   5篇
  1985年   8篇
  1984年   7篇
  1983年   4篇
  1982年   5篇
  1981年   7篇
  1980年   8篇
  1979年   2篇
  1978年   4篇
  1977年   5篇
  1976年   3篇
  1975年   4篇
  1974年   2篇
  1973年   5篇
  1968年   2篇
  1934年   1篇
  1882年   1篇
  1877年   2篇
排序方式: 共有339条查询结果,搜索用时 15 毫秒
161.
CCD photometry of the NEAR mission fly-by target 253 Mathilde is presented. Measurements taken during 52 nights of observations, from February to June 1995, allow a rotation period of 17.406±0.010 days and a lightcurve amplitude of 0.45±0.02 mag to be determined. A B-V color index of 0.67±0.02 and a V-R of 0.35±0.02 are measured, which are compatible with C-type membership. The determination of the phase relation results in H = 10.28±0.03 and G = 0.12±0.06. Indications that the lightcurve is not strictly singly-periodic are found. A power-spectrum analysis detects a secondary frequency f2 = 0.0322±0.0010 d−1, which is interpreted as evidence for a complex rotation state.  相似文献   
162.
The formation process(es) responsible for creating the observed geologically recent gully features on Mars has remained the subject of intense debate since their discovery. We present new data and analysis of northern hemisphere gullies from Mars Global Surveyor data which is used to test the various proposed mechanisms of gully formation. We located 137 Mars Orbiter Camera (MOC) images in the northern hemisphere that contain clear evidence of gully landforms and analyzed these images in combination with Mars Orbiter Laser Altimeter (MOLA) and Thermal Emission Spectrometer (TES) data to provide quantitative measurements of numerous gully characteristics. Parameters we measured include apparent source depth and distribution, vertical and horizontal dimensions, slopes, orientations, and present-day characteristics that affect local ground temperatures. Northern hemisphere gullies are clustered in Arcadia Planitia, Tempe Terra, Acidalia Planitia, and Utopia Planitia. These gullies form in craters (84%), knobby terrain (4%), valleys (3%), other/unknown terrains (9%) and are found on all slope orientations although the majority of gullies are equator-facing. Most gullies (63%) are associated with competent rock strata, 26% are not associated with strata, and 11% are ambiguous. Assuming thermal conductivities derived from TES measurements as well as modeled surface temperatures, we find that 95% of the gully alcove bases with adequate data coverage lie at depths where subsurface temperatures are greater than 273 K and 5% of the alcove bases lie within the solid water regime. The average alcove length is 470 m and the average channel length is 690 m. Based on a comparison of measured gully features with predictions from the various models of gully formation, we find that models involving carbon dioxide, melting ground ice in the upper few meters of the soil, dry landslide, and surface snowmelt are the least likely to describe the formation of the martian gullies. Although some discrepancies still exist between prediction and observation, the shallow and deep aquifer models remain as the most plausible theories. Interior processes involving subsurface fluid sources are generally favored over exogenic processes such as wind and snowfall for explaining the origin of the martian gullies. These findings gleaned from the northern hemisphere data are in general agreement with analyses of gullies in the southern hemisphere [Heldmann, J.L., Mellon, M.T., 2004. Icarus 168, 285-304].  相似文献   
163.
S Marchi  C Barbieri  T.C Owen 《Icarus》2004,168(2):367-373
We have obtained new observations of Triton with the ESO New Technology Telescope (La Silla, Chile) in October 2002. Using the high quality of NTT instrumentation, we were able to cover the entire 0.4-2.5 μm spectral range in a single night. We applied this procedure for two nights, well selected along the orbit of Triton, in order to cover essentially the trailing side one night, and the leading one the other night, obtaining the first face-resolved 0.4-2.4 μm spectra of Triton. We discuss here the spectra and the differences between the two faces, and the implications of these new results for a better understanding of the surface composition of Triton. In particular we found possible clues for the presence of rocky materials on Triton's surface.  相似文献   
164.
The Kwakshua Watersheds Observatory (KWO) is an integrative watersheds observatory on the coastal margin of a rain-dominated bog-forest landscape in British Columbia (BC), Canada. Established in 2013, the goal of the KWO is to understand and model the flux of terrestrial materials from land to sea – the origins, pathways, processes and ecosystem consequences – in the context of long-term environmental change. The KWO consists of seven gauged watersheds and a network of observation sites spanning from land to sea and along drainage gradients within catchments. Time-series datasets include year-round measurements of weather, soil hydrology, streamflow, aquatic biogeochemistry, microbial ecology and nearshore oceanographic conditions. Sensor measurements are recorded every 5 min and water samples are collected approximately monthly. Additional observations are made during high-flow conditions. We used remote sensing to map watershed terrain, drainage networks, soils and terrestrial ecosystems. The watersheds range in size from 3.2 to 12.8 km2, with varying catchment characteristics that influence hydrological and biogeochemical responses. Despite local variation, the overall study area is a global hotspot for yields of dissolved organic carbon, dissolved organic nitrogen and dissolved iron at the coastal margin. This observatory helps fill an important gap in the global network of observatories, in terms of spatial location (central coast of BC), climate (temperate oceanic), hydrology (very high runoff, pluvial regime), geology (igneous intrusive, glacially scoured), vegetation (bog rainforest) and soils (large stores of organic carbon).  相似文献   
165.
Geografisk Tidsskrift—Danish Journal of Geography 110(2):337–355, 2010

In northern Greenland, the Cape Grinnell beach ridge plain offers a 9,000year multi-proxy record for isostatic recovery, storm history, and the hydrological changes related to precipitation and slope evolution. The chronology of uplifted beach ridges is constrained by ten geological 14C ages on shell and sea mammal bones and eleven upper limiting ages from archaeological sites that span the last 3,000 years. Beach ridges formed under the influence of open water storms with renewed frequency and intensity ca. 3 ka and 1 ka ago. A lack of shell may reflect cooler sea surface temperatures. The presence and absence of ice can be inferred by push-features. Three intervals of heightened precipitation produced extensive fan deltas: (a) after 9 ka BP (b) prior to 4.5 ka BP and (c) during the Little Ice Age (AD 1350–1900). Active solifluction lobes and colluvia cover beach ridge deposits that are between 9 and 7 ka old.  相似文献   
166.
AXIOM (Advanced X‐ray Imaging Of the Magnetosphere) is a concept mission which aims to explain how the Earth's magnetosphere responds to the changing impact of the solar wind using a unique method never attempted before; performing wide‐field soft X‐ray imaging and spectroscopy of the magnetosheath, magnetopause and bow shock at high spatial and temporal resolution. Global imaging of these regions is possible because of the solar wind charge exchange (SWCX) process which produces elevated soft X‐ray emission from the interaction of high charge‐state solar wind ions with primarily neutral hydrogen in the Earth's exosphere and near‐interplanetary space (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
167.
The Mw 7.6 October 8, 2005 Kashmir earthquake triggered several thousand landslides throughout the Himalaya of northern Pakistan and India. These were concentrated in six different geomorphic–geologic–anthropogenic settings. A spatial database, which included 2252 landslides, was developed and analyzed using ASTER satellite imagery and geographical information system (GIS) technology. A multi-criterion evaluation was applied to determine the significance of event-controlling parameters in triggering the landslides. The parameters included lithology, faults, slope gradient, slope aspect, elevation, land cover, rivers and roads. The results showed four classes of landslide susceptibility. Furthermore, they indicated that lithology had the strongest influence on landsliding, particularly when the rock is highly fractured, such as in shale, slate, clastic sediments, and limestone and dolomite. Moreover, the proximity of the landslides to faults, rivers, and roads was also an important factor in helping to initiate failures. In addition, landslides occurred particularly in moderate elevations on south facing slopes. Shrub land, grassland, and also agricultural land were highly susceptible to failures, while forested slopes had few landslides. One-third of the study area was highly or very highly susceptible to future landsliding and requires immediate mitigation action. The rest of the region had a low or moderate susceptibility to landsliding and remains relatively stable. This study supports the view that (1) earthquake-triggered landslides are concentrated in specific zones associated with event-controlling parameters; and (2) in the western Himalaya deforestation and road construction contributed significantly to landsliding during and shortly after earthquakes.  相似文献   
168.
Existing models of post-fire erosion have focused primarily on using empirical or deterministic approaches to predict the magnitude of response from catchments given some initial rainfall and burn conditions. These models are concerned with reducing uncertainties associated with hydro-geomorphic transfer processes and typically operate at event timescales. There have been relatively few attempts at modelling the stochastic interplay between fire disturbance and rainfall as factors which determine the frequency and severity with which catchments are conditioned (or primed) for a hazardous event. This process is sensitive to non-stationarity in fire and rainfall regime parameters and therefore suitable for evaluating the effects of climate change and strategic fire management on hydro-geomorphic hazards from burnt areas. In this paper we ask the question, “What is the first-order effect of climate change on the interaction between fire disturbance and storms?” The aim is to isolate the effects of fire and rainfall regimes on the frequency of extreme erosion events. Fire disturbance and storms are represented as independent stochastic processes with properties of spatial extent, temporal duration, and frequency of occurrence, and used in a germ–grain model to quantify the annual area affected by extreme erosion events due to the intersection of fire disturbance and storms. The model indicates that the frequency of extreme erosion events will increase as a result of climate change, although regions with frequent storms were most sensitive.  相似文献   
169.
The objective of this research was to develop and parameterise a physically justified yet low‐parameter model to quantify observed changes in surface runoff ratios with hillslope length. The approach starts with the assumption that a unit of rainfall‐excess runoff generated at a point is a fraction β of precipitation P (m) which travels some variable distance down a slope before reinfiltrating, depending on the local rainfall, climate, soils, etc. If this random distance travelled Y is represented by a distribution, then a survival function will describe the probability of this unit of runoff travelling further than some distance x (m). The total amount of per unit width runoff Q (m2) flowing across the lower boundary of a slope of length λ (m) may be considered the sum of all the proportions of the units of rainfall excess runoff integrated from the lower boundary x = 0 to the upper boundary x = λ of the slope. Using these assumptions we derive a model Q(λ) = βPμλ/(μ + λ), > 0, 0 ≤ β ≤ 1, λ ≥ 0) that describes the change in surface runoff with slope length, where μ (m) is the mean of the random variable Y. Dividing both sides of this equation by yields a simple two‐parameter equation for the dimensionless hillslope runoff ratio Qh(λ) = βμ/(μ + λ). The model was parameterised with new rainfall and runoff data collected from three replicates of bounded 2 m wide plots of four different lengths (0.5, 1.0, 2.0 and 4.0 m) for 2 years from a forested SE Australian site, and with 32 slope length–runoff data sets from 12 other published studies undertaken between 1934 and 2010. Using the parameterised model resulted in a Nash and Sutcliffe statistic between observed and predicted runoff ratio (for all data sets combined) of 0.93, compared with –2.1 when the runoff ratio was fixed at the value measured from the shortest plot. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号