首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
大气科学   3篇
地质学   21篇
自然地理   9篇
  2009年   1篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1998年   1篇
  1997年   2篇
  1995年   2篇
  1994年   2篇
  1991年   4篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1977年   3篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
21.
22.
Sediments from two small lakes distal to the Tromsø–Lyngen moraine at Tromsø, northern Norway, indicate that the area was deglaciated prior to c. 11.7 14C ka BP. The earliest vegetation was dominated by calciphilous and heliophilous pioneer plants on unstable soils; this changed to a vegetation reflecting a dry continental climate until c. 10.7 14Cka BP. A phase (10.7–10.5 14Cka BP) with snow-bed communities was followed by one with a mosaic of plant communities. This was succeeded by Empetrum heaths c. 10.3 14Cka BP, then by an open forest with Betula pubescens after 10.0 14Cka BP. Ice-front oscillations in the Tromsø area are evaluated. The main part of the Younger Dryas glacial readvance, the Tromsø–Lyngen event, probably occurred between 10.7 and 10.3 14Cka BP.  相似文献   
23.
24.
This paper reviews the deglaciation history and palaeoclimate from 22 to 9.5 14Cka BP in the Andfjord-Vagsfjord area. Eight main glacial events are recorded: The Egga-I (>22 14Cka BP), the Bjerka, the Egga-II (>14.6 14Cka BP), the Flesen (14.5 14Cka BP), the D (13.8–13.2 14Cka BP), the Skarpnes (12.2 14Cka BP), the Tromsø–Lyngen (10.7–10.3 14C ka BP) and the Stordal (10.0–9.5 14Cka BP). Onset of the final deglaciation occurred about 14.6 14Cka BP. Most of the western part of the Fennoscandian and Barents Sea Ice Sheets receded from the outer continental shelf 15–14 14Cka BP. The delivery and melting of icebergs at this time to the Norwegian-Greenland Sea resulted in a low oxygen isotope event recorded in a number of cores in the region. Atlantic water intruded the area 13.2 14Cka BP, and an atmospheric warming commenced 12.9/12.8 14Cka BP. A marked glacial recession occurred before the Skarpnes event. During Allerød time, the glaciers retreated to the fjord heads or even farther inland. The Fennoscandian outlet glaciers readvanced (locally more than 40 km), reached their Younger Dryas outer limit after 10.7 14Cka BP and retreated from this position before about 10.3 14Cka BP.  相似文献   
25.
Vorren, T. O. 1977 06 01: Grain-size distribution and grain-size parameters of differcnt till type on Hardangervidda, south Norway.
Grain-size characteristics for different till types on Hardangervidda havc been studied: Basal tills are finer grained than ablation tills: phyllitic basal tills are relatively rich in gravel and clay: basal tills derived from a semiporphyritic granite are poor in clay and have a deficiency of very coarse sand. Of the Folk a Ward's (1957) grain-size distribution parameters, sorting and kurtosis seem to he the most diagnostic parameters for distinguishing between different types of till. A linear corrclation betwen sorting and the other grain-size parameters is indicated for the basal tills.  相似文献   
26.
Cores representing a 5.5m long sequence recovered from lake Æråsvatnet have been investigated for lithostratigraphy, micro- and macrofossils and radiocarbon chronology. For the first time in Fennoscandia the maximum Weichselian advance has been closely bracketed with radiocarbon datings (19,000–18,500 B.P.). A continuous stratigraphy from 18,500 B.P. and onwards, partly marine and partly lacustrine, discloses the local shoreline displacement, the palaeovegetation, the palaeoclimate and, together with other data, the deglaciation history. Two phases with a prevailing High Arctic climate have occurred: 18,000 to 16,000 B.P. and 13,700 to 12,800 B.P. Important climatic amelioration accelerating the deglacial recession occurred 16,000, 12,800 and 12,000 B.P. The continental ice sheet was situated close to its maximum position until about 16,000 B.P. The following deglaciation was interrupted by (a minor ?) readvance/halt about 15,000 B.P. (the Flesen event), 13,700-13,000 B.P. (the D-event), 12,500 B.P. (the Skarpnes event) and 11,000–10,000 B.P. (the TromsØ-Lyngen event). The deglaciation chronology and pattern can be correlated with the suggested deep-sea-stratigraphy-based stepwise pattern relying on the old age alternative for termination IA.  相似文献   
27.
Based on four shallow drillings in the outer part of the Bjørnøya trough, palaeoenvironments of foraminifera in glacigenic sediments are discussed. Different methods were used; detailed foraminiferal analysis, oxygen and carbon stable isotope analysis and transfer functions. Six different foraminiferal assemblage zones were found. One zone, AA, appears to be pre-Pleistocene in age and contains an abundance of reworked early Tertiary foraminifera. Four of the assemblage zones have a dominant arctic foraminiferal content; however, a marked boreal input is evident, particularly in zone B where B. marginata dominates. We suggest that B. marginata has been resedimented from pre-Eemian 'warm' deposits. Its occurrence in these older warm intervals possibly reflects a lower input of the Norwegian Current into the area and possibly an increase in the relative nutrient content of the water masses. The six zones have also differing numbers of foram./gram sediment. An assemblage zone where a boreal component of foraminifera ( E. nipponica, P. bulloides ) dominates was found, zone C. We define this particular assemblage zone to be of Eemian age (isotope substage 5e). The foraminiferal assemblage composition and the oxygen and carbon isotopes from zone C indicate that oceanographic conditions in the Barents Sea during the Eemian were slightly different from those of the present and that, possibly, Atlantic waters were more prevalent.  相似文献   
28.
TORE P°SSE 《Sedimentology》1997,44(6):1011-1014
The grain size distribution within a unimodal sediment can be described as a lognormal distribution when the distribution is formed by only one process. However, most sediments are formed by more than one process giving polymodal sediments. Polymodal sediments have to be described as the sum of several normal distributions, one for each process involved within the formation. Grain size distributions are usually interpreted with the help of graphical methods. Interpretations of polymodal sediments require mathematical methods. In mathematical terms a unimodal sediment can be described as a tangential hyperbolic function (tanh) and a polymodal sediment can generally be described by the sum of two or three tanh-functions. The tanh-method is a tool for identifying and estimating the number of modes within a grain size distribution and helps interpret the processes involved within the formation of a deposit. The mathematical method can also be used to computerize sediment data, allowing storage with just a few numbers. Different samples can easily be compared and classified. Also, this method could be a valuable tool for calculations of various sediment parameters both in geotechnology and hydrogeology.  相似文献   
29.
30.
Stratigraphic, textural, mineralogical, geochemical and palynological investigations indicate the existence of: lacustrine clay from late Eemian (Hovden thermomer); dark indicateclayey basal till of the Early Weichselian age (Hovden kryomer); lacustrine sediments from an Early or Middle Weichselian interstadial (Førnes thermomer); and basal till from Middle/ Late Weichselian (Førnes kryomer). The environment during the thermomers is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号