首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   4篇
大气科学   38篇
地球物理   26篇
地质学   115篇
海洋学   11篇
天文学   8篇
自然地理   24篇
  2015年   2篇
  2014年   2篇
  2013年   18篇
  2012年   6篇
  2011年   6篇
  2010年   9篇
  2009年   14篇
  2008年   8篇
  2007年   7篇
  2006年   12篇
  2005年   11篇
  2004年   4篇
  2003年   12篇
  2002年   9篇
  2001年   4篇
  2000年   8篇
  1999年   1篇
  1998年   8篇
  1997年   13篇
  1996年   10篇
  1995年   3篇
  1994年   2篇
  1993年   5篇
  1992年   6篇
  1991年   8篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1986年   5篇
  1985年   2篇
  1984年   5篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1978年   3篇
  1975年   2篇
  1973年   2篇
  1971年   3篇
  1970年   2篇
  1967年   1篇
  1965年   1篇
排序方式: 共有222条查询结果,搜索用时 15 毫秒
221.
During the Saharan Mineral Dust Experiment (SAMUM) conducted in summer 2006 in southeast Morocco, the complex refractive index of desert dust was determined from airborne measurements of particle size distributions and aerosol absorption coefficients at three different wavelengths in the blue (467 nm), green (530 nm) and red (660 nm) spectral regions. The vertical structure of the dust layers was analysed by an airborne high spectral resolution lidar (HSRL). The origin of the investigated dust layers was estimated from trajectory analyses, combined with Meteosat 2nd Generation (MSG) scenes and wind field data analyses. The real part n of the dust refractive index was found almost constant with values between 1.55 and 1.56, independent of the wavelength. The values of the imaginary part k varied between the blue and red spectral regions by a factor of three to ten depending on the dust source region. Absolute values of k ranged from 3.1 × 10−3 to 5.2 × 10−3 at 450 nm and from 0.3 × 10−3 to 2.5 × 10−3 at 700 nm. Groupings of k values could be attributed to different source regions.  相似文献   
222.
Authigenic pyrite grains from a section of the Lower Toarcian Posidonia Shale were analysed for their trace‐element contents and sulphur‐isotope compositions. The resulting data are used to evaluate the relationship between depositional conditions and pyrite trace‐element composition. By using factor analysis, trace‐elements in pyrite may be assigned to four groups: (i) heavy metals (including Cu, Ni, Co, Pb, Bi and Tl); (ii) oxyanionic elements (As, Mo and Sb); (iii) elements partitioned in sub‐microscopic sphalerite inclusions (Zn and Cd); and (iv) elements related to organic or silicate impurities (Ga and V). Results indicate that trace‐element contents in pyrite depend on the site and mechanism of pyrite formation, with characteristic features being observed for diagenetic and syngenetic pyrites. Diagenetic pyrite formed within anoxic sediments generally has a high heavy metals content, and the degree of pyritization of these elements increases with increasing oxygen deficiency, similar to the degree of pyritization of reactive Fe. The highest gradient in the increase of the degree of trace element pyritization with bottom‐water oxygenation was found for the elements Ni < Cu < Mo = As < Tl. In contrast, syngenetic pyrite formed within a euxinic water column typically is enriched in As, Mo and Sb, but is low in heavy metals, and the geochemical variation reflects changes in sea water composition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号