首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   352篇
  免费   9篇
  国内免费   4篇
测绘学   6篇
大气科学   20篇
地球物理   101篇
地质学   79篇
海洋学   15篇
天文学   126篇
综合类   1篇
自然地理   17篇
  2021年   3篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   5篇
  2016年   5篇
  2015年   4篇
  2014年   5篇
  2013年   12篇
  2012年   10篇
  2011年   13篇
  2010年   7篇
  2009年   15篇
  2008年   16篇
  2007年   15篇
  2006年   12篇
  2005年   15篇
  2004年   22篇
  2003年   10篇
  2002年   14篇
  2001年   13篇
  2000年   8篇
  1999年   8篇
  1998年   10篇
  1997年   3篇
  1996年   5篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1990年   6篇
  1989年   2篇
  1988年   2篇
  1986年   6篇
  1985年   4篇
  1984年   6篇
  1983年   12篇
  1982年   11篇
  1981年   4篇
  1980年   7篇
  1979年   13篇
  1978年   5篇
  1977年   8篇
  1976年   6篇
  1975年   3篇
  1974年   3篇
  1973年   3篇
  1971年   2篇
  1969年   2篇
  1961年   2篇
排序方式: 共有365条查询结果,搜索用时 15 毫秒
151.
Carbon dioxide emissions and heat flow have been determined from the Ohaaki hydrothermal field, Taupo Volcanic Zone (TVZ), New Zealand following 20 a of production (116 MWe). Soil CO2 degassing was quantified with 2663 CO2 flux measurements using the accumulation chamber method, and 2563 soil temperatures were measured and converted to equivalent heat flow (W m−2) using published soil temperature heat flow functions. Both CO2 flux and heat flow were analysed statistically and then modelled using 500 sequential Gaussian simulations. Forty subsoil CO2 gas samples were also analysed for stable C isotopes. Following 20 a of production, current CO2 emissions equated to 111 ± 6.7 T/d. Observed heat flow was 70 ± 6.4 MW, compared with a pre-production value of 122 MW. This 52 MW reduction in surface heat flow is due to production-induced drying up of all alkali–Cl outflows (61.5 MW) and steam-heated pools (8.6 MW) within the Ohaaki West thermal area (OHW). The drying up of all alkali–Cl outflows at Ohaaki means that the soil zone is now the major natural pathway of heat release from the high-temperature reservoir. On the other hand, a net gain in thermal ground heat flow of 18 MW (from 25 MW to 43.3 ± 5 MW) at OHW is associated with permeability increases resulting from surface unit fracturing by production-induced ground subsidence. The Ohaaki East (OHE) thermal area showed no change in distribution of shallow and deep soil temperature contours despite 20 a of production, with an observed heat flow of 26.7 ± 3 MW and a CO2 emission rate of 39 ± 3 T/d. The negligible change in the thermal status of the OHE thermal area is attributed to the low permeability of the reservoir beneath this area, which has limited production (mass extraction) and sheltered the area from the pressure decline within the main reservoir. Chemistry suggests that although alkali–Cl outflows once contributed significantly to the natural surface heat flow (∼50%) they contributed little (<1%) to pre-production CO2 emissions due to the loss of >99% of the original CO2 content due to depressurisation and boiling as the fluids ascended to the surface. Consequently, the soil has persisted as the major (99%) pathway of CO2 release to the atmosphere from the high temperature reservoir at Ohaaki. The CO2 flux and heat flow surveys indicate that despite 20 a of production the variability in location, spatial extent and magnitude of CO2 flux remains consistent with established geochemical and geophysical models of the Ohaaki Field. At both OHW and OHE carbon isotopic analyses of soil gas indicate a two-stage fractionation process for moderate-flux (>60 g m−2 d−1) sites; boiling during fluid ascent within the underlying reservoir and isotopic enrichment as CO2 diffuses through porous media of the soil zone. For high-flux sites (>300 g m−2 d−1), the δ13CO2 signature (−7.4 ± 0.3‰ OHW and −6.5 ± 0.6‰ OHE) is unaffected by near-surface (soil zone) fractionation processes and reflects the composition of the boiled magmatic CO2 source for each respective upflow. Flux thresholds of <30 g m−2 d−1 for purely diffusive gas transport, between 30 and 300 g m−2 d−1 for combined diffusive–advective transport, and ?300 g m−2 d−1 for purely advective gas transport at Ohaaki were assigned. δ13CO2 values and cumulative probability plots of CO2 flux data both identified a threshold of ∼15 g m−2 d−1 by which background (atmospheric and soil respired) CO2 may be differentiated from hydrothermal CO2.  相似文献   
152.
Vulnerability of laptop computers to volcanic ash and gas   总被引:1,自引:0,他引:1  
Laptop computers are vital components of critical infrastructure sectors and a common tool in broader society. As they become more widely used, their exposure to volcanic hazards will increase. Therefore, understanding how laptops will function in volcanic environments is necessary to provide suitable mitigation options. In this study, laptop computers were subjected to volcanic ash and gas in both laboratory and field settings. None of the laptops sustained permanent damage in laboratory experiments; however, ash contamination did reduce the functionality of keyboards, CD drives, and cooling fans. Several laptops shut down temporarily due to overheating following ash contamination. In field experiments, laptops were exposed to high concentrations of volcanic gases at White Island, New Zealand. These laptops did not sustain permanent damage as only a small amount of gas was able to enter the laptops. However, metal components on the outside of the laptop did sustain minor corrosion. Re-examination of the laptops after 6?months indicated they were in full working order. Printed circuit boards suffered significant corrosion damage and ceased working only when in direct and sustained contact with volcanic gases. Simple mitigation techniques such as isolating laptops inside heavy duty polyethylene bags were effective. Overall, our experiments demonstrate that laptops have a relatively low risk of damage from volcanic ash and gas exposure, but have a low-medium risk of loss of functionality in ash environments. We think this has implications for other electronic equipment used extensively in critical infrastructure services.  相似文献   
153.
Research on grazing effects usually compares the same sites through time or grazed and ungrazed sites over the same time period. Both approaches are complicated in arid environments where grazing can have a long undocumented history and landscapes can be spatially heterogenous. This work employs both approaches simultaneously by comparing grazed and ungrazed samples through both time and space using fossil plant macrofossils and pollen from packrat middens. A series of 27 middens, spanning from 995 yr BP to the present, were collected from Glen Canyon in southeastern Utah, USA. These middens detail vegetation change just prior to, and following, the historical introduction of domesticated grazers and also compares assemblages from nearby ungrazable mesas. Pre-grazing middens, and modern middens from ungrazed areas, record more native grasses, native herbs, and native shrubs such as Rhus trilobata, Amelanchier utahensis, and Shepherdia rotundifolia than modern middens from grazed areas. Ordinations demonstrate that site-to-site variability is more important than any temporal changes, making selection of comparable grazed versus ungrazed study treatments difficult. But within similar sites, the changes through time show that grazing lowered the number of taxa recorded, and lessened the pre-existing site differences, homogenizing the resultant plant associations in this desert grassland.  相似文献   
154.
155.
Weathering disaggregates rock into regolith – the fractured or granular earth material that sustains life on the continental land surface. Here, we investigate what controls the depth of regolith formed on ridges of two rock compositions with similar initial porosities in Virginia (USA). A priori, we predicted that the regolith on diabase would be thicker than on granite because the dominant mineral (feldspar) in the diabase weathers faster than its granitic counterpart. However, weathering advanced 20× deeper into the granite than the diabase. The 20 × ‐thicker regolith is attributed mainly to connected micron‐sized pores, microfractures formed around oxidizing biotite at 20 m depth, and the lower iron (Fe) content in the felsic rock. Such porosity allows pervasive advection and deep oxidation in the granite. These observations may explain why regolith worldwide is thicker on felsic compared to mafic rock under similar conditions. To understand regolith formation will require better understanding of such deep oxidation reactions and how they impact fluid flow during weathering. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
156.
157.
Some new ideas on the interaction of the solar wind with the magnetosphere are brought forward. The mechanism of reflection of charged particles at the magnetopause is examined. It is shown that in general the reflection is not specular but that a component of momentum of the particle parallel to the magnetopause changes. A critical angle is derived such that particles whose trajectories make an angle less than it with the magnetopause enter the magnetosphere freely, so transferring their forward momentum to it. Spatially or temporally non-uniform entry of charged particles into the magnetosphere causes electric fields parallel to the magnetopause which either allow the free passage of solar wind across it or vacuum reconnection to the interplanetary magnetic field depending on the direction of the latter. These electric fields can be discharged in the ionosphere and so account qualitatively for the dayside agitation of the geomagnetic field observed on the polar caps. The solar wind wind plasma which enters the magnetosphere creates (1) a dawn-dusk electric field across the tail (2) enough force to account for the geomagnetic tail and (3) enough current during disturbed times to account for the auroral electrojets. The entry of solar wind plasma across the magnetosphere and connection of the geomagnetic to interplanetary field can be assisted by wind generated electric field in the ionosphere transferred by the good conductivity along the geomagnetic field to the magnetopause. This may account for some of the observed correlations between phenomena in the lower atmosphere and a component of magnetic disturbance.  相似文献   
158.
The early miocene Tecuya volcanic center in the southern San Joaquin basin of California consists of flows and tuffs of basalt and rhyolite that erupted, closely spaced in time, in both submarine and subaerial conditions. The rhyolites are overlain by the basalts and constitute approximately 45% of a total of at least 180 km3 of the Tecuya volcanic rocks. The basalts have Nd(t) values of +2 to +6 and (87Sr/86Sr)i values between 0.7035 and 0.7052. These rocks show LREE enrichment [(La/Yb)N =2.4–5.5; La=28–150 times chondrite] and higher Th/U, Th/Ta, Rb/Ta, Ba/Ta, Cs/Rb but lower K/Rb ratios than MORB. Combined major- and trace-element, and Sr–Nd isotopic data suggest the involvement of subcontinental lithosphere, depleted upper mantle source (MORB), and local continental crust in the basalt petrogenesis. Nd(t) values in rhyolites vary from +1.5 to +3.7 while (87Sr/86Sr)i ratios range from 0.7051 to 0.7064. The rhyolites display LREE enrichment [(La/Yb)N=10; La=100 times chondrite] along with a distinct negative Eu anomaly (Eu/Eu*=0.75) and depletion of Ti and P. Mixing relations in (87/86Sr)i Nd(t) space among basalts, rhyolites, and local continental crust indicate that the Tecuya rhyolites were produced by assimilation of variable amounts of continental crust by MORB-related magmas and subcontinental lithosphere-derived melts. This conclusion is supported by the synchroneity of Tecuya volcanism at 22 Ma with interaction of a segment of the East Pacific Rise along the southern California margin. The Tecuya volcanic rocks thus provide an example for the generation of rhyolitic melts owing to crustal assimilation by basaltic melts during mid-oceanic ridge-induced magmatism along a continental margin.  相似文献   
159.
Abstract— Metallic aluminum alloy foils exposed on the forward, comet‐facing surface of the aerogel tray on the Stardust spacecraft are likely to have been impacted by the same cometary particle population as the dedicated impact sensors and the aerogel collector. The ability of soft aluminum alloy to record hypervelocity impacts as bowl‐shaped craters offers an opportunistic substrate for recognition of impacts by particles of a potentially wide size range. In contrast to impact surveys conducted on samples from low Earth orbit, the simple encounter geometry for Stardust and Wild‐2, with a known and constant spacecraft‐particle relative velocity and effective surface‐perpendicular impact trajectories, permits closely comparable simulation in laboratory experiments. For a detailed calibration program, we have selected a suite of spherical glass projectiles of uniform density and hardness characteristics, with well‐documented particle size range from 10 μm to nearly 100 μm. Light gas gun buckshot firings of these particles at approximately 6 km s?1 onto samples of the same foil as employed on Stardust have yielded large numbers of craters. Scanning electron microscopy of both projectiles and impact features has allowed construction of a calibration plot, showing a linear relationship between impacting particle size and impact crater diameter. The close match between our experimental conditions and the Stardust mission encounter parameters should provide another opportunity to measure particle size distributions and fluxes close to the nucleus of Wild‐2, independent of the active impact detector instruments aboard the Stardust spacecraft.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号