首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3100篇
  免费   1308篇
  国内免费   48篇
测绘学   89篇
大气科学   43篇
地球物理   2016篇
地质学   1335篇
海洋学   195篇
天文学   508篇
综合类   13篇
自然地理   257篇
  2024年   1篇
  2023年   2篇
  2022年   9篇
  2021年   43篇
  2020年   67篇
  2019年   201篇
  2018年   205篇
  2017年   294篇
  2016年   338篇
  2015年   350篇
  2014年   375篇
  2013年   430篇
  2012年   297篇
  2011年   276篇
  2010年   264篇
  2009年   170篇
  2008年   227篇
  2007年   162篇
  2006年   123篇
  2005年   118篇
  2004年   101篇
  2003年   111篇
  2002年   92篇
  2001年   86篇
  2000年   87篇
  1999年   15篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
排序方式: 共有4456条查询结果,搜索用时 47 毫秒
821.
Terrestrial cosmogenic nuclide (TCN) concentrations measured in river sediments can be used to estimate catchment‐wide denudation rates. By investigating multiple TCN the steadiness of sediment generation, transport and depositional processes can be tested. Measurements of 10Be, 21Ne and 26Al from the hyper‐ to semi‐arid Rio Lluta catchment, northern Chile, yield average single denudation rates ranging from 12 to 75 m Myr–1 throughout the catchment. Paired nuclide analysis reveals complex exposure histories for most of the samples and thus the single nuclide estimates do not exclusively represent catchment‐wide denudation rates. The lower range of single nuclide denudation rates (12–17 m Myr–1), established with the noble gas 21Ne, is in accordance with palaeodenudation rates derived from 21Ne/10Be and 26Al/10Be ratio analysis. Since this denudation rate range is measured throughout the system, it is suggested that a headwater signal is transported downstream but modulated by a complex admixture of sediment that has been stored and buried at proximal hillslope or terrace deposits, which are released during high discharge events. That is best evidenced by the stable nuclide 21Ne, which preserves the nuclide concentration even during storage intervals. The catchment‐wide single 21Ne denudation rates and the palaeodenuation rates contrast with previous TCN‐derived erosion rates from bedrock exposures at hillslope interfluves by being at least one order of magnitude higher, especially in the lower river course. These results support earlier studies that identified a coupling of erosional processes in the Western Cordillera contrasting with decoupled processes in the Western Escarpment and in the Coastal Cordillera. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
822.
Riparian vegetation is known to exert a number of mechanical and hydrologic controls on bank stability. In particular, plant roots provide mechanical reinforcement to a soil matrix due to the different responses of soils and roots to stress. Root reinforcement is largely a function of the strength of the roots crossing potential shear planes, and the number and diameter of such roots. However, previous bank stability models have been constrained by limited field data pertaining to the spatial and temporal variability of root networks within stream banks. In this paper, a method is developed to use root‐architecture data to derive parameters required for modeling temporal and spatial changes in root reinforcement. Changes in root numbers over time were assumed to follow a sigmoidal curve, which commonly represents the growth rates of organisms. Regressions for numbers of roots crossing potential shear planes over time showed small variations between species during the juvenile growth phase, but extrapolation led to large variations in root numbers by the time the senescent phase of the sigmoidal growth curve had been reached. In light of potential variability in the field data, the mean number of roots crossing a potential shear plane at each year of tree growth was also calculated using data from all species and an additional sigmoidal regression was run. After 30 years the mean number of roots predicted to cross a 1 m shear plane was 484, compared with species‐specific curves whose values ranged from 240 roots for black willow trees to 890 roots for western cottonwood trees. In addition, the effect of spatial variations in rooting density with depth on stream‐bank stability was modeled using the bank stability and toe erosion model (BSTEM). Three root distributions, all approximating the same average root reinforcement (5 kPa) over the top 1 m of the bank profile, were modeled, but with differing vertical distributions (concentrated near surface, non‐linear decline with depth, uniform over top meter). It was found that stream‐bank FS varied the most when the proportion of the failure plane length to the depth of the rooting zone was greatest. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
823.
Laboratory flume experiments were carried out to evaluate the effect of particle density on bedload transport of sand‐sized particles and the effect of a suspended load of clay particles (kaolinite) on bedload transport of sand‐sized particles in rill flow conditions. Three materials in the range 400–600 µm were selected to simulate bedload transport of primary particles and aggregates: sand (2650 kg/m3), crushed brick (2450 kg/m3) and anthracite (1300–1700 kg/m3). In the two first experiments, two different methods were applied to determine bedload transport capacity of coarse particles for various conditions of flow discharge (from 2 to 15 L/min) and slope (2.2, 3 and 4%). In the third experiment, clear water was replaced with kaolinite–water mixture and bedload transport capacity of crushed brick particles was determined for a 4% slope and different concentrations of kaolinite (0, 7, 41 and 84 g/L). The results showed that bedload transport increased significantly with the decrease in particle density but the effect of particle density on transport rates was much less important than flow discharge. Velocity measurements of clear flow, flow mixed with coarse particles and coarse particles confirmed the existence of a differentiation between suspended load and bedload. In these experimental conditions, suspended load of kaolinite did not affect bedload rates of crushed brick particles. Three transport capacity formulae were tested against observed bedload rates. A calibration of the Foster formula revealed that the shear stress exponent should be greater than 1.5. The Low and the Govers unit stream power (USP) equations were then evaluated. The Low equation was preferred for the prediction of bedload rates of primary particles but it was not recommended in the case of aggregates of low density because of the limited experimental conditions applied to derive this equation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
824.
The friction developed between a steel base plate and a mortar base contributes shear resistance to the building system during a seismic event. In order to investigate the possible sliding behavior between the base plate and the mortar, a shake table study is undertaken using a large rigid mass supported by steel contact elements which rest on mortar surfaces connected to the shake table. Horizontal input accelerations are considered at various magnitudes and frequencies. The results provide a constant friction coefficient during sliding with an average value of approximately 0.78. A theoretical formulation of the friction behavior is also undertaken. The theoretical equations show that the sliding behavior is dependent on the ratio of the friction force to the input force. The addition of vertical accelerations to the system further complicates the sliding behavior as a result of the varying normal force. This results in a variable friction resistance which is a function of the amplitude, phase, and frequency of the horizontal and vertical input motions. In general, this study showed a consistent and reliable sliding behavior between steel and mortar. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
825.
This paper reports on the investigation of novel fiber reinforced elastomeric isolator (FREI) bearings, which do not have thick end plates, and are used in an unbonded application. Owing to the stable lateral load‐displacement response exhibited by the unbonded FREI bearings, the proposed bearings are referred to as stable unbonded (SU)‐FREIs. A shake table test program was conducted on a two‐story test‐structure having well‐defined elastic response characteristics. Compared with the results for the corresponding fixed base (FB) structure, the peak response values, distribution of lateral response throughout the height of the structure, and response time histories of the tested base isolated (BI) structure indicate that significantly improved response can be achieved. This study clearly indicates that SU‐FREI bearings can provide an effective seismic isolation system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
826.
827.
Many of the control algorithms proposed for structures subjected to seismic excitations are based on a centralized design philosophy, such as the linear quadratic regulator (LQR) design. The information of all the states of the system is usually required in these methods to determine the control command. For applications involving large‐scale systems, it may be more convenient to design decentralized controllers that depend only on the information of the local states for control command calculation. In this study, a nonlinear decentralized robust control algorithm is proposed. The structural system is decomposed into several artificially uncoupled subsystems. The interconnections between adjacent subsystems are treated as uncertain but bounded disturbances to the subsystems. The controller associated with one subsystem determines the control command based only on the states of the local subsystem. Numerical examples of linear and nonlinear structural models are presented to demonstrate the effectiveness and robustness of the proposed controller. The traditional LQR design is used as a baseline for comparison. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
828.
This paper first presents the force–deformation relationship of a post‐tensioned (PT) steel beam‐to‐column connection constructed with bolted web friction devices (FDs). This paper then describes the test program conducted in the National Center for Research on Earthquake Engineering, Taiwan, on four bolted FDs and four full‐scale PT beam‐to‐column moment connection subassemblies using the FDs. Tests confirm that (1) the hysteretic behavior of four bolted FDs is very stable, (2) the friction coefficient between the steel plate and the brass shim is about 0.34, (3) the proposed force–deformation relationships reasonably predict the experimental responses of the PT connections under cyclically increasing deformations up to a beam peak rotation of 0.05 rad, and (4) the decompression moments do not degrade as beam cyclic deformations increase. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
829.
This paper proposes a promising seismic isolation method particularly suitable for developing countries, which makes use of rubber–soil mixtures. Apart from reducing the level of shaking in the horizontal direction, the distinctive advantage of the proposed method is that it can also significantly reduce the shaking level of vertical ground motion, to which an increasing attention has been paid in the earthquake engineering community. On the other hand, the use of scrap tires as the rubber material can provide an alternative way to consume the huge stockpile of scrap tires all over the world. Moreover, the low cost of this proposed seismic protection scheme can greatly benefit those developing countries where resources and technology are not adequate for earthquake mitigation with well‐developed, yet expensive, techniques. The proposed method has been demonstrated through a series of numerical simulations and a parametric study has also been carried out. Lastly, five important issues regarding the concept and feasibility have been discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
830.
The degree of glacial modification in small catchments along the eastern Sierra Nevada, California, controls the timing and pattern of sediment flux to the adjacent fans. There is a close relationship between the depth of fan‐head incision and the pattern and degree of Late Pleistocene catchment erosion by valley glaciers; catchments with significant glacial activity are associated with deeply incised fan heads, whereas fans emerging from glacially unmodified catchments are unincised. We suggest that the depth of fan‐head incision is controlled by the potential for sediment storage during relatively dry ice‐free periods, which in turn is related to the downstream length of the glacially modified valley and creation of accommodation through valley floor slope lowering and glacial valley overdeepening and widening. Significant storage in glacially modified basins during ice‐free periods leads to sediment supply‐limited conditions at the fan head and causes deep incision. In contrast, a lack of sediment trapping allows quasi‐continuous sediment supply to the fan and prevents incision of the fan head. Sediment evacuation rates should thus show large variations in glacially modified basins, with major peaks during glacial and lows during interglacial or ice‐free periods, respectively. In contrast, sediment removal from glacially unmodified catchments in this type of setting should be free of this effect, and will be dominated instead by short‐term variations, modulated for example by changes in vegetation cover or storm frequency. This distinction may help improve our understanding of long‐term sediment yields as a measure of erosional efficiency. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号