首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81504篇
  免费   1161篇
  国内免费   785篇
测绘学   2037篇
大气科学   5799篇
地球物理   16143篇
地质学   28382篇
海洋学   7278篇
天文学   18591篇
综合类   161篇
自然地理   5059篇
  2021年   697篇
  2020年   759篇
  2019年   864篇
  2018年   1785篇
  2017年   1654篇
  2016年   2091篇
  2015年   1268篇
  2014年   2002篇
  2013年   4057篇
  2012年   2290篇
  2011年   3152篇
  2010年   2871篇
  2009年   3801篇
  2008年   3319篇
  2007年   3359篇
  2006年   3193篇
  2005年   2552篇
  2004年   2537篇
  2003年   2442篇
  2002年   2289篇
  2001年   2060篇
  2000年   1937篇
  1999年   1683篇
  1998年   1696篇
  1997年   1634篇
  1996年   1322篇
  1995年   1307篇
  1994年   1203篇
  1993年   1080篇
  1992年   1040篇
  1991年   935篇
  1990年   1006篇
  1989年   949篇
  1988年   878篇
  1987年   1021篇
  1986年   882篇
  1985年   1139篇
  1984年   1232篇
  1983年   1162篇
  1982年   1069篇
  1981年   1031篇
  1980年   942篇
  1979年   891篇
  1978年   863篇
  1977年   834篇
  1976年   745篇
  1975年   758篇
  1974年   700篇
  1973年   721篇
  1972年   443篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
461.
Recent tests on the geometric stability of several digital cameras that were not designed for photogrammetric applications have shown that the accomplished accuracies in object space are either limited or that the accuracy potential is not exploited to the fullest extent. A total of 72 calibrations were calculated with four different software products for eleven digital camera models with different hardware setups, some with mechanical fixation of one or more parts. The calibration procedure was chosen in accord to a German guideline for evaluation of optical 3D measuring systems [VDI/VDE, VDI/VDE 2634 Part 1, 2002. Optical 3D Measuring Systems–Imaging Systems with Point-by-point Probing. Beuth Verlag, Berlin]. All images were taken with ringflashes which was considered a standard method for close-range photogrammetry. In cases where the flash was mounted to the lens, the force exerted on the lens tube and the camera mount greatly reduced the accomplished accuracy. Mounting the ringflash to the camera instead resulted in a large improvement of accuracy in object space. For standard calibration best accuracies in object space were accomplished with a Canon EOS 5D and a 35 mm Canon lens where the focusing tube was fixed with epoxy (47  μm maximum absolute length measurement error in object space). The fixation of the Canon lens was fairly easy and inexpensive resulting in a sevenfold increase in accuracy compared with the same lens type without modification. A similar accuracy was accomplished with a Nikon D3 when mounting the ringflash to the camera instead of the lens (52  μm maximum absolute length measurement error in object space). Parameterisation of geometric instabilities by introduction of an image variant interior orientation in the calibration process improved results for most cameras. In this case, a modified Alpa 12 WA yielded the best results (29  μm maximum absolute length measurement error in object space). Extending the parameter model with FiBun software to model not only an image variant interior orientation, but also deformations in the sensor domain of the cameras, showed significant improvements only for a small group of cameras. The Nikon D3 camera yielded the best overall accuracy (25  μm maximum absolute length measurement error in object space) with this calibration procedure indicating at the same time the presence of image invariant error in the sensor domain. Overall, calibration results showed that digital cameras can be applied for an accurate photogrammetric survey and that only a little effort was sufficient to greatly improve the accuracy potential of digital cameras.  相似文献   
462.
In this work we have developed a theoretical model that helps the interpretation of the remotely sensed thermal infrared measurements carried out over citrus orchards. A detailed analysis of the different factors which take part in the definition of the effective emissivity and temperature (observation height, viewing angle, type of soil, dimensions and separation between orange trees) is made. The model was validated under vertical observation in a citrus orchard during seven nights. In this situation we have determined that the model performs to an accuracy of about 1%.  相似文献   
463.
464.
In a project to classify livestock grazing intensity using participatory geographic information systems (PGIS), we encountered the problem of how to synthesize PGIS-based maps of livestock grazing intensity that were prepared separately by local experts. We investigated the utility of evidential belief functions (EBFs) and Dempster's rule of combination to represent classification uncertainty and integrate the PGIS-based grazing intensity maps. These maps were used as individual sets of evidence in the application of EBFs to evaluate the proposition that " This area or pixel belongs to the high, medium, or low grazing intensity class because the local expert(s) says (say) so ". The class-area-weighted averages of EBFs based on each of the PGIS-based maps show that the lowest degree of classification uncertainty is associated with maps in which "vegetation species" was used as the mapping criterion. This criterion, together with local landscape attributes of livestock use may be considered as an appropriate standard measure for grazing intensity. The maps of integrated EBFs of grazing intensity show that classification uncertainty is high when the local experts apply at least two mapping criteria together. This study demonstrates the usefulness of EBFs to represent classification uncertainty and the possibility to use the EBF values in identifying and using criteria for PGIS-based mapping of livestock grazing intensity.  相似文献   
465.
t-GIS and environmental dynamic models   总被引:2,自引:0,他引:2  
1 IntroductionTodayitseemsthatpeople’sinterestandatten tiontoGISmainlyfocusontheaspectofspatialat tributesofgeographicinformation ,notsufficientlyontimefactor .Thisisanerroneoustendency ,anditwillbedisadvantageoustothebalanceddevelop mentofGISwhenexplaini…  相似文献   
466.
467.
The focus of this work is on developing a new hierarchical hybrid Support Vector Machine (SVM) method to address the problems of classification of multi or hyper spectral remotely sensed images and provide a working technique that increases the classification accuracy while lowering the computational cost and complexity of the process. The paper presents issues in analyzing large multi/hyper spectral image data sets for dimensionality reduction, coping with intra pixel spectral variations, and selection of a flexible classifier with robust learning process. Experiments conducted revealed that a computationally cheap algorithm that uses Hamming distance between the pixel vectors of different bands to eliminate redundant bands was quite effective in helping reduce the dimensionality. The paper also presents the concept of extended mathematical morphological profiles for segregating the input pixel vectors into pure or mixed categories which will enable further computational cost reductions. The proposed method’s overall classification accuracy is tested with IRS data sets and the Airborne Visible Infrared Imaging Spectroradiometer Indian Pines hyperspectral benchmark data set and presented.  相似文献   
468.
There is an emerging requirement for processing global navigation satellite system (GNSS) signals indoor where the signal is very weak and subjected to spatial fading. Typically, longer coherent integration intervals provide the additional processing gain required for the detection and processing of such weak signals. However, the arbitrary physical motion of the handset imputed by the user limits the effectiveness of longer coherent integration intervals due to the spatial decorrelation of the multipath-faded GNSS signal. In this paper, limits of coherent integration due to spatial decorrelation are derived and corroborated with experimental verification. A general result is that the processing gain resulting from direct coherent integration saturates after the antenna has moved through a certain distance, which for typical indoor propagation, is about half a carrier wavelength. However, a refined Doppler search coupled with a prolonged coherent integration interval extends this limit, which is effectively a manifestation of selective diversity.  相似文献   
469.
Simulation study of a follow-on gravity mission to GRACE   总被引:6,自引:3,他引:6  
The gravity recovery and climate experiment (GRACE) has been providing monthly estimates of the Earth’s time-variable gravity field since its launch in March 2002. The GRACE gravity estimates are used to study temporal mass variations on global and regional scales, which are largely caused by a redistribution of water mass in the Earth system. The accuracy of the GRACE gravity fields are primarily limited by the satellite-to-satellite range-rate measurement noise, accelerometer errors, attitude errors, orbit errors, and temporal aliasing caused by un-modeled high-frequency variations in the gravity signal. Recent work by Ball Aerospace & Technologies Corp., Boulder, CO has resulted in the successful development of an interferometric laser ranging system to specifically address the limitations of the K-band microwave ranging system that provides the satellite-to-satellite measurements for the GRACE mission. Full numerical simulations are performed for several possible configurations of a GRACE Follow-On (GFO) mission to determine if a future satellite gravity recovery mission equipped with a laser ranging system will provide better estimates of time-variable gravity, thus benefiting many areas of Earth systems research. The laser ranging system improves the range-rate measurement precision to ~0.6 nm/s as compared to ~0.2 μm/s for the GRACE K-band microwave ranging instrument. Four different mission scenarios are simulated to investigate the effect of the better instrument at two different altitudes. The first pair of simulated missions is flown at GRACE altitude (~480 km) assuming on-board accelerometers with the same noise characteristics as those currently used for GRACE. The second pair of missions is flown at an altitude of ~250 km which requires a drag-free system to prevent satellite re-entry. In addition to allowing a lower satellite altitude, the drag-free system also reduces the errors associated with the accelerometer. All simulated mission scenarios assume a two satellite co-orbiting pair similar to GRACE in a near-polar, near-circular orbit. A method for local time variable gravity recovery through mass concentration blocks (mascons) is used to form simulated gravity estimates for Greenland and the Amazon region for three GFO configurations and GRACE. Simulation results show that the increased precision of the laser does not improve gravity estimation when flown with on-board accelerometers at the same altitude and spacecraft separation as GRACE, even when time-varying background models are not included. This study also shows that only modest improvement is realized for the best-case scenario (laser, low-altitude, drag-free) as compared to GRACE due to temporal aliasing errors. These errors are caused by high-frequency variations in the hydrology signal and imperfections in the atmospheric, oceanographic, and tidal models which are used to remove unwanted signal. This work concludes that applying the updated technologies alone will not immediately advance the accuracy of the gravity estimates. If the scientific objectives of a GFO mission require more accurate gravity estimates, then future work should focus on improvements in the geophysical models, and ways in which the mission design or data processing could reduce the effects of temporal aliasing.  相似文献   
470.
Pleistocene to present evaporitic lacustrine sediments in Lake Magadi, East African Rift Valley, Kenya were studied and mapped using spectral remote sensing methods. This approach incorporated surface mineral mapping using space-borne hyperspectral Hyperion imagery together with laboratory analysis, including visible, near-infrared diffuse reflectance spectroscopy (VNIR) measurements and X-ray diffraction for selected rock and soil samples of the study area. The spectral signatures of Magadiite and Kenyaite, which have not been previously reported, were established and the spectral signatures of trona, chert series, volcanic tuff and the High Magadi bed were also analyzed.Image processing techniques, MNF (Minimum Noise Fraction) and MTMF (Mixture Tuned Matched Filtering) using a stratified approach (image analysis with and without the lake area), were used to enhance the mapping of evaporates. High Magadi beds, chert series and volcanic tuff were identified from the Hyperion image with an overall mapping accuracy of 84.3%. Even though, the spatial distribution of evaporites and sediments in Lake Magadi area change in response to climate variations, the mineralogy of this area has not been mapped recently. The results of this study shows the usefulness of the hypersspectral remote sensing to map the surface geology of this kind of environment and to locate promising sites for industrial open-pit trona mining in a qualitative and quantitative manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号