首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25396篇
  免费   350篇
  国内免费   312篇
测绘学   716篇
大气科学   1790篇
地球物理   4867篇
地质学   8744篇
海洋学   2289篇
天文学   6295篇
综合类   52篇
自然地理   1305篇
  2021年   200篇
  2020年   237篇
  2019年   297篇
  2018年   605篇
  2017年   587篇
  2016年   724篇
  2015年   408篇
  2014年   696篇
  2013年   1299篇
  2012年   795篇
  2011年   1037篇
  2010年   954篇
  2009年   1253篇
  2008年   1126篇
  2007年   1151篇
  2006年   1124篇
  2005年   838篇
  2004年   835篇
  2003年   759篇
  2002年   718篇
  2001年   616篇
  2000年   638篇
  1999年   562篇
  1998年   555篇
  1997年   526篇
  1996年   396篇
  1995年   396篇
  1994年   408篇
  1993年   313篇
  1992年   309篇
  1991年   258篇
  1990年   311篇
  1989年   271篇
  1988年   254篇
  1987年   279篇
  1986年   237篇
  1985年   317篇
  1984年   339篇
  1983年   329篇
  1982年   313篇
  1981年   249篇
  1980年   267篇
  1979年   216篇
  1978年   206篇
  1977年   215篇
  1976年   179篇
  1975年   190篇
  1974年   177篇
  1973年   167篇
  1972年   114篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
This study addresses whether Raman spectra can be used to estimate the degree of accumulated radiation damage in monazite-(Ce) samples whose chemical composition was previously determined. Our results indicate that the degree of disorder in monazite–(Ce), as observed from increasing Raman band broadening, generally depends on both the structural state (i.e., radiation damage) and the chemical composition (i.e., incorporation of non-formula elements). The chemical effects were studied on synthetic orthophosphates grown using the Li-Mo flux method, and non radiation-damaged analogues of the naturally radiation-damaged monazite–(Ce) samples, produced by dry annealing. We found that the “chemical” Raman-band broadening of natural monazite–(Ce) can be predicted by the empirical formula, $$ {\hbox{FWHM}} {\hbox{[c}}{{\hbox{m}}^{ - {1}}}{]} = {3}{.95} + {26}{.66} \times {\hbox{(Th}} + {\hbox{U}} + {\hbox{Ca}} + {\hbox{Pb)}} {\hbox{[apfu]}} $$ where, FWHM = full width at half maximum of the main Raman band of monazite–(Ce) (i.e., the symmetric PO4 stretching near 970?cm?1), and (Th+U+Ca+Pb) = sum of the four elements in apfu (atoms per formula unit). Provided the chemical composition of a natural monazite–(Ce) is known, this “chemical band broadening” can be used to estimate the degree of structural radiation damage from the observed FWHM of the ν1(PO4) band of that particular sample using Raman spectroscopy. Our annealing studies on a wide range of monazite–(Ce) reference materials and other monazite–(Ce) samples confirmed that this mineral virtually never becomes highly radiation damaged. Potential advantages and the practical use of the proposed method in the Earth sciences are discussed.  相似文献   
102.
Iag Newsletter     
  相似文献   
103.
Intense studies of upper and deep ocean processes were carried out in the Northwestern Indian Ocean (Arabian Sea) within the framework of JGOFS and related projects in order to improve our understanding of the marine carbon cycle and the ocean’s role as a reservoir for atmospheric CO2. The results show a pronounced monsoon-driven seasonality with enhanced organic carbon fluxes into the deep-sea during the SW Monsoon and during the early and late NE Monsoon north of 10°N. The productivity is mainly regulated by inputs of nutrients from subsurface waters into the euphotic zone via upwelling and mixed layer-deepening. Deep mixing introduces light limitation by carrying photoautotrophic organisms below the euphotic zone during the peak of the NE Monsoon. Nevertheless, deep mixing and strong upwelling during the SW Monsoon provide an ecological advantage for diatoms over other photoautotrophic organisms by increasing the silica concentrations in the euphotic zone. When silica concentrations fall below 2 μmol l−1, diatoms lose their dominance in the plankton community. During diatom-dominated blooms, the biological pathway of uptake of CO2 (the biological pump) appears to be more efficient than during blooms of other organisms, as indicated by organic carbon to carbonate carbon (rain) ratios. Due to the seasonal alternation of diatom and non-diatom dominated exports, spatial variations of the annual mean rain ratios are hardly discernible along the main JGOFS transect.Data-based estimates of the annual mean impact of the biological pump on the fCO2 in the surface water suggest that the biological pump reduces the increase of fCO2 in the surface water caused by intrusion of CO2-enriched subsurface water by 50–70%. The remaining 30 to 50% are attributed to CO2 emissions into the atmosphere. Rain ratios up to 60% higher in river-influenced areas off Pakistan and in the Bay of Bengal than in the open Arabian Sea imply that riverine silica inputs can further enhance the impact of the biological pump on the fCO2 in the surface water by supporting diatom blooms. Consequently, it is assumed that reduced river discharges caused by the damming of major rivers increase CO2 emission by lowering silica inputs to the Arabian Sea; this mechanism probably operates in other regions of the world ocean also.  相似文献   
104.
测定了角叉菜属(Chondrus)5个代表种的核糖体DNA内转录间隔区(ITS)及5.8SrDNA基因序列。结果表明,角叉菜属ITS区(含ITS1、5.8SrDNA和ITS2)序列长度范围为704—714bp,G+C含量为44.6%—45.7%,变异位点69个,信息位点16个;其中,ITS1和ITS2的长度范围分别为147—149bp和398—404bp。5.8SrDNA长度为158bp,没有变异和信息位点。由MEGA3构建的系统进化树(ME和MP)显示:在进化尺度上,真红藻纲的松节藻科(Rhodomelaceae)与红毛菜纲(Bangiophyceae)亲缘关系较近。在真红藻纲内,杉藻目(Gigartinales)的进化地位相对较高,其次是海膜科(Halymeniaceae)、石花菜科(Gelidiaceae)、红叶藻科(Delesseriaceae)和粉枝藻科(Liagoraceae)等,而松节藻科进化地位相对较低。在杉藻目内,杉藻科(Gigartinaceae)和胶黏藻科(Dumontiaceae)进化关系密切,而形态学特征相似的角叉菜和马泽藻(Mazzaella)亲缘关系非常近。  相似文献   
105.
Abstract Merrihueite (K,Na)2(Fe, Mg)5Si12O30 (na < 0.5, fe > 0.5, where na = Na/(Na + K), fe = Fe/(Fe + Mg) in atomic ratio) is a rare mineral described only in several chondrules and irregularly-shaped fragments in the Mezö-Madaras L3 chondrite (Dodd et al., 1965; Wood and Holmberg, 1994). Roedderite (Na,K)2(Mg, Fe)5Si12O30 (na > 0.5, fe < 0.5) has been found only in enstatite chondrites and in the reduced, subchondritic silicate inclusions in IAB irons (Fuchs, 1966; Rambaldi et al., 1984; Olsen, 1967). We describe silica-roedderite-bearing clasts in L/LL3.5 ALHA77011 and LL3.7 ALHA77278, a silica-roedderite-bearing chondrule in L3 Mezö-Madaras, and a silica-merrihueite-bearing chondrule in L/LL3.5 ALHA77115. The findings of merrihueite and roedderite in ALHA77011, ALHA77115, ALHA77278 and Mezö-Madaras fill the compositional gap between previously described roedderite in enstatite chondrites and silicate inclusions in IAB irons and merrihueite in Mezö-Madaras, suggesting that there is a complete solid solution of roedderite and merrihueite in meteorites. We infer that the silica- and merrihueite/roedderite-bearing chondrules and clasts experienced a complex formational history including: (a) fractional condensation in the solar nebula that produced Si-rich and Al-poor precursors, (b) melting of fractionated nebular solids resulting in the formation of silica-pyroxene chondrules, (c) in some cases, fragmentation in the nebula or on a parent body, (d) reaction of silica with alkali-rich gas that formed merrihueite/roedderite on a parent body, (e) formation of fayalitic olivine and ferrosilite-rich pyroxene due to reaction of silica with oxidized Fe on a parent body, and (f) minor thermal metamorphism, possibly generated by impacts.  相似文献   
106.
The period and amplitude variations of local peaks in the Fourier amplitude spectra of free-field strong ground motion recorded at five stations in San Fernando Valley of metropolitan Los Angeles, California, are described, searching for peaks that reoccur during different earthquakes. The data suggest that some local peaks reoccur (about 50% of the time), during shaking by small local earthquakes (peak ground velocities, vmax<10–20 cm/s). During large strong motion amplitudes (vmax>20 cm/s), these peaks are shifted towards longer periods (by nonlinear response of soils) or disappear. The data also suggest that densification and settlement of soil, minutes and hours following the strong shaking may contribute towards fluctuations in the effective stiffness of the shallow surface layers.  相似文献   
107.
Lake Ohrid, located on the Balkan Peninsula within the Dinaride–Albanide–Hellenide mountain belt, is a tectonically active graben within the South Balkan Extensional Regime (SBER). Interpretation of multichannel seismic cross sections and bathymetric data reveals that Lake Ohrid formed during two main phases of deformation: (1) a transtensional phase which opened a pull‐apart basin, and (2) an extensional phase which led to the present geometry of Lake Ohrid. After the initial opening, a symmetrical graben formed during the Late Miocene, bounded by major normal faults on each side in a pull‐apart type basin. The early‐stage geometry of the basin has a typical rhomboidal shape restricted by two sets of major normal faults. Thick undisturbed sediments are present today at the site where the acoustic basement is deepest, illustrating that Lake Ohrid is a potential target for drilling a long and continuous sediment core for studying environmental changes within the Mediterranean region. Neotectonic activity since the Pliocene takes place along the roughly N–S‐striking Eastern and Western Major Boundary Normal Faults that are partly exposed at the present lake floor. The tectono‐sedimentary structure of the basin is divided into three main seismic units overlying the acoustic basement associated with fluvial deposits and lacustrine sediments. A seismic facies analysis reveals a prominent cyclic pattern of high‐ and low‐amplitude reflectors. We correlate this facies cyclicity with vegetation changes within the surrounding area that are associated with glacial/interglacial cycles. A clear correlation is possible back to ca. 450 kyrs. Extrapolation of average sedimentation rates for the above mentioned period results in age estimate of ca. 2 Myrs for the oldest sediments in Lake Ohrid.  相似文献   
108.
109.
High levels of SO2 and particulate pollution enable the rapid development of gypsum-rich weathering crusts in Budapest. Two types of white crusts, thin and thick ones, and two forms of black crusts, laminar and framboidal ones, were studied in limestone buildings of the parliament and Citadella. The percentage of crust cover and damage categories were documented on selected walls. Petrographic, XRD, XRF and sulphur isotope analyses were performed under laboratory conditions to understand the mechanism of crust formation. White crusts found both on exposed and sheltered walls display a calcite-rich layer with gypsum, while black crusts are enriched with gypsum. The sulphur isotopic composition of white and black crusts overlaps, but the crusts are slightly enriched in heavy isotopes compared to rainwater. S content, Si/Al ratios and particulates in black crusts suggest that air pollution (SO2, dust) contributes to black crust formation. The accumulation of sulphur and Zn enrichment of white crusts were also documented indicating that under high pollution levels, even these compound can accumulate on exposed facades.  相似文献   
110.
Composition and distribution of benthic foraminifers, being coupled with isotopic-geochemical data on Upper Pleistocene and Holocene sediments from the southern Bering Sea (Core GC-11; 53°31′ N, 178°51′E, water depth 3060 m), demonstrate variations in bottom water properties during the last 54 kyr. Their abundance increased to some extent during short periods corresponding to warm Dansgaard-Oeshger interstadials 14, 12, 8, and 2 of marine isotopic stages (MIS) 3 and 2. The first and second deglaciation phases separated by the Younger Dryas cooling episode are marked by significant abundance peaks of benthic foraminifers (an order magnitude higher than in the glacial period), although their share in community of benthic and planktonic foraminifers taken together decreases. Species typical of stable high-productivity areas gain the dominant position. A significant proportion of agglutinated species in the Holocene sediments is indicative of Ca ions deficiency that accelerates dissolution of carbonate tests up to their disappearance approximately 2.5–3 ka ago.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号