首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81040篇
  免费   1101篇
  国内免费   683篇
测绘学   2412篇
大气科学   5870篇
地球物理   15581篇
地质学   30282篇
海洋学   6671篇
天文学   17925篇
综合类   281篇
自然地理   3802篇
  2021年   488篇
  2020年   557篇
  2019年   697篇
  2018年   3987篇
  2017年   3682篇
  2016年   3088篇
  2015年   1105篇
  2014年   1701篇
  2013年   3077篇
  2012年   2734篇
  2011年   4720篇
  2010年   4336篇
  2009年   5192篇
  2008年   4331篇
  2007年   4841篇
  2006年   2573篇
  2005年   2346篇
  2004年   2258篇
  2003年   2171篇
  2002年   1973篇
  2001年   1582篇
  2000年   1539篇
  1999年   1336篇
  1998年   1323篇
  1997年   1302篇
  1996年   1043篇
  1995年   988篇
  1994年   964篇
  1993年   809篇
  1992年   732篇
  1991年   699篇
  1990年   722篇
  1989年   719篇
  1988年   655篇
  1987年   738篇
  1986年   659篇
  1985年   809篇
  1984年   938篇
  1983年   841篇
  1982年   818篇
  1981年   728篇
  1980年   687篇
  1979年   621篇
  1978年   626篇
  1977年   562篇
  1976年   506篇
  1975年   515篇
  1974年   485篇
  1973年   508篇
  1972年   362篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
41.
We present results from a new simulation code that accounts for the evolution of the reservoirs of carbon dioxide on Mars, from its early years to the present. We establish a baseline model parameter set that produces results compatible with the present (i.e., Patm?6.5 mbar with permanent CO2 ice cap) for a wide range of initial inventories. We find that the initial inventory of CO2 broadly determines the evolutionary course of the reservoirs of CO2. The reservoirs include the atmosphere, ice cap, adsorbed CO2 in the regolith, and carbonate rocks. We track the evolution of the free inventory: the atmosphere, ice cap and regolith. Simulations begin at 4.53 Gyr before present with a rapid loss of free inventory to space in the early Noachian. Models that assume a relatively small initial inventory (?5 bar) have pronounced minima in the free inventory of CO2 toward the end of the Noachian. Under baseline parameters, initial inventories below ∼4.5 bar result in a catastrophic loss of the free inventory to space. The current free inventory would be then determined by the balance between outgassing, sputtering losses and chemical weathering following the end of the late bombardment. We call these “thin” models. They generically predict small current free inventories in line with expectations of a small present CO2 ice cap. For “thick” models, with initial inventories ?5 bar, a surplus of 300-700 mbar of free CO2 remains during the late-Noachian. The histories of free inventory in time for thick models tend to converge within the last 3.5 Gyr toward a present with an ice cap plus atmospheric inventory of about 100 mbar. For thick models, the convergence is largely due to the effects of chemical weathering, which draws down higher free inventories more rapidly than the low. Thus, thick models have ?450 mbar carbonate reservoirs, while thin models have ?200 mbar. Though both thick and thin scenarios can reproduce the current atmospheric pressure, the thick models imply a relatively large current CO2 ice cap and thin models, little or none. While the sublimation of a massive cap at a high obliquity would create a climate swing of greenhouse warming for thick models, under the thin model, mean temperatures and pressures would be essentially unaffected by increases in obliquity.  相似文献   
42.
43.
44.
Surface morphology and related issues for nuclei of three comets: Halley, Borrelly and Wild 2, are considered in the paper. Joint consideration of publications and results of our analysis of the comets’ images led to conclusions, partly new, partly repeating conclusions published by other researchers. It was found that typical for all three nuclei is the presence of rather flat areas: floors of craters and other depressions, mesas and terraces. This implies that flattening surfaces or planation is a process typical for the comet nuclei. Planation seems to work through the sublimation-driven slope collapse and retreat. This requires effective sublimation so this process should work only when a comet is close to the Sun and if on the nucleus there are starting slopes, steep and high enough to support the “long-distance” avalanching of the collapsing material. If the surface had no starting slopes, then instead of planation, the formation of pitted-and-hilly surfaces should occur. An example of this could be the mottled terrain of the Borelly nucleus. Both ways of the sublimational evolution on the nucleus surface should lead to accumulation of cometary regolith. The thickness of the degassed regolith is not known, but it is obvious that in surface depressions, including the flat-floor ones, it should be larger compared with nondepression areas. This may have implications for the in situ study of comets by the Deep Impact and Rosetta missions.Our morphological analysis puts constraints on the applicability of the popular “rubble-pile comet nucleus” hypothesis (Weissman, 1986. Are cometery nuclei primordial rubble piles? Nature 320, 242-244.). We believe that the rubble pile hypothesis can be applicable to the blocky Halley nucleus. The Borelly and Wild 2 nuclei also could be rubble piles. But in these cases the “rubbles” have to be either smaller than 30-50 m (a requirement to keep lineament geometry close to ideal), or larger than 1-2 km (a requirement to form the rather extended smooth, flat surfaces of mesa tops and crater floors). Another option is that the Borelly and Wild 2 nuclei are not rubble piles.In relation to surface morphology we suggest that three end-member types of the comet nuclei may exist: (1) impact cratered “pristine” bodies, (2) non-cratered fragments of catastrophic disruption, and (3) highly Sun-ablated bodies. In this threefold classification, the Wild 2 nucleus is partially ablated primarily cratered body. Borrelly is significantly ablated and could be either primarily cratered or not-cratered fragment. Halley is certainly partially ablated but with the available images it is difficult to say if remnants of impact craters do exist on it.Recently published observations and early results of analysis of the Tempel 1 nucleus images taken by Deep Impact mission are in agreement with our conclusions on the processes responsible for the Halley, Borrelly and Wild 2 nuclei morphologies. In particular, we have now more grounds to suggest that decrease in crater numbers and increase of the role of smooth flat surfaces in the sequence Wild 2?Tempel 1?Borelli reflects a progress in the sublimational degradation of the nucleus surface during comet passages close to the Sun.  相似文献   
45.
Measurements of 18O concentrations in precipitation, soil solution, spring and runoff are used to determine water transit time in the small granitic Strengbach catchment (0·8 km2; 883–1146 m above sea level) located in the Vosges Mountains of northeastern France. Water transit times were calculated by applying the exponential, exponential piston and dispersion models of the FlowPC program to isotopic input (rainfall) and output (spring and stream water) data sets during the period 1989–95. The input function of the model was modified compared with the former version of the model and estimated by a deterministic approach based on a simplified hydrological balance. The fit between observed and calculated output data showed marked improvements compared with results obtained using the initial version of the model. An exponential piston version of the model applied to spring water indicates a 38·5 month mean transit time, which suggests that the volume in the aquifer, expressed in water depth, is 2·4 m. A considerable thickness (>45 m) of fractured bedrock may be involved for such a volume of water to be stored in the aquifer. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
46.
47.
48.
Green Lake Landslide is an ancient giant rock slide in gneiss and granodiorite located in the deeply glaciated Fiordland region of New Zealand. The landslide covers an area of 45 km2 and has a volume of about 27 km3. It is believed to be New Zealand's largest landslide, and possibly the largest landslide of its type on Earth. It is one of 39 known very large (106–107 m3) and giant (≥108 m3) postglacial landslides in Fiordland discussed in the paper. Green Lake Landslide resulted in the collapse of a 9 km segment of the southern Hunter Mountains. Slide debris moved up to 2.5 km laterally and 700 m vertically, and formed a landslide dam about 800 m high, impounding a lake about 11 km long that was eventually infilled with sediments. Geomorphic evidence supported by radiocarbon dating indicates that Green Lake Landslide probably occurred 12 000–13 000 years ago, near the end of the last (Otira) glaciation. The landslide is described, and its geomorphic significance, age, failure mechanism, cause, and relevance in the region are discussed, in relation to other large landslides and recent earthquake-induced landslides in Fiordland. The slope failure occurred on a low-angle fault zone undercut by glacial erosion, and was probably triggered by strong shaking (MM IX–X) associated with a large (≥ M 7.5–8) earthquake, on the Alpine Fault c. 80 km to the northwest. Geology was a major factor that controlled the style and size of Green Lake landslide, and in that respect it is significantly different from most other gigantic landslides. Future large earthquakes on the Alpine Fault in Fiordland are likely to trigger more very large and giant landslides across the region, causing ground damage and devastation on a scale that has not occurred during the last 160 years, with potentially disastrous effects on towns, tourist centres, roads, and infrastructure. The probability of such an event occurring within the next 50 years may be as high as 45%.  相似文献   
49.
An analysis of the UV spectra of 28 asteroids obtained with the Internal Ultraviolet Explorer (IUE) satellite is presented. The spectra lie within the range 2100–3200 Å. Our results are examined in terms of both asteroid classification and of current ideas concerning the surface mineralogy of asteroids. For all the asteroids examined, UV reflectivity declines approximately linearly toward shorter wavelengths. In general, the same taxonomic groups are seen in the UV as in the visible and IR, although there is some evidence for asteroids with anomalous UV properties and for UV subclasses within the S class. No mineral absorption features are reported of strength similar to the strongest features in the visible and IR regions, but a number of shallow absorptions do occur and may provide valuable information on the surface composition of many asteroids.  相似文献   
50.
An elastoplastic model for sands is presented in this paper, which can describe stress–strain behaviour dependent on mean effective stress level and void ratio. The main features of the proposed model are: (a) a new state parameter, which is dependent on the initial void ratio and initial mean stress, is proposed and applied to the yield function in order to predict the plastic deformation for very loose sands; and (b) another new state parameter, which is used to determine the peak strength and describe the critical state behaviour of sands during shearing, is proposed in order to predict simply negative/positive dilatancy and the hardening/softening behaviour of medium or dense sands. In addition, the proposed model can also predict the stress–strain behaviour of sands under three-dimensional stress conditions by using a transformed stress tensor instead of ordinary stress tensor. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号