首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30278篇
  免费   975篇
  国内免费   466篇
测绘学   933篇
大气科学   2353篇
地球物理   6750篇
地质学   10749篇
海洋学   2552篇
天文学   6605篇
综合类   238篇
自然地理   1539篇
  2021年   216篇
  2020年   242篇
  2019年   306篇
  2018年   1029篇
  2017年   947篇
  2016年   968篇
  2015年   555篇
  2014年   802篇
  2013年   1410篇
  2012年   1396篇
  2011年   1442篇
  2010年   1066篇
  2009年   1379篇
  2008年   1241篇
  2007年   1260篇
  2006年   1245篇
  2005年   1643篇
  2004年   1673篇
  2003年   1388篇
  2002年   886篇
  2001年   683篇
  2000年   679篇
  1999年   576篇
  1998年   558篇
  1997年   540篇
  1996年   404篇
  1995年   395篇
  1994年   409篇
  1993年   313篇
  1992年   309篇
  1991年   267篇
  1990年   317篇
  1989年   275篇
  1988年   255篇
  1987年   282篇
  1986年   237篇
  1985年   318篇
  1984年   338篇
  1983年   330篇
  1982年   313篇
  1981年   250篇
  1980年   270篇
  1979年   216篇
  1978年   207篇
  1977年   216篇
  1976年   182篇
  1975年   194篇
  1974年   177篇
  1973年   169篇
  1972年   114篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
741.
The Mascot–Jefferson City (M-JC) Mississippi Valley-type (MVT) deposits are in the Valley and Ridge province of the Appalachian orogen in East Tennessee. They have been a major source of zinc for the USA but their age is uncertain and thus their genesis controversial. About 10 specimens from each of 37 sites have been analysed paleomagnetically using alternating field and thermal step demagnetisation methods and saturation isothermal remanence methods. The sites sample limestones, dolostones, breccia clasts and sphalerite–dolomite MVT mineralisation from mines in the Lower Ordovician Kingsport and Mascot formations of the Knox Group. The characteristic remanent magnetisation (ChRM) is carried by magnetite in the limestones, by both magnetite and pyrrhotite in the dolostones and by pyrrhotite preferentially to magnetite in the mineralisation. Mineralized sites have a more intense ChRM than non-mineralised, indicating that the mineralising and magnetisation event are coeval. Paleomagnetic breccia tests on clasts at the three sites are negative, indicating that their ChRM is post-depositional remagnetisation, and a paleomagnetic fold test is negative, indicating that the ChRM is a remagnetisation, and a post-dates peak Alleghanian deformation. The unit mean ChRM direction for the: (a) limestones gives a paleopole at 129°E, 12°N (dp=18°, dm=26°, N=3), indicating diagenesis formed a secondary chemical remanent magnetisation during the Late Ordovician–Early Silurian; (b) dolomitic limestones and dolostone host rocks gives a paleopole at 125.3°E, 31.9°N (dp=5.3°, dm=9.4°, N=7), recording regional dolomitisation at 334±14 Ma (1σ); and (c) MVT mineralisation gives a paleopole at 128.7°E, 34.0°N (dp=2.4°, dm=4.4°, N=25), showing that it acquired its primary chemical remanence at 316±8 Ma (1σ). The mineralisation is interpreted to have formed from hydrothermal fluid flow, either gravity or tectonically driven, after peak Alleghanian deformation in eastern Tennessee with regional dolomitisation of the host rocks occurring as part of a continuum during the 20 Ma prior to and during peak deformation.  相似文献   
742.
Abstract The initial volcanic phase of Cretaceous island arc strata in central Puerto Rico, at the eastern end of the extinct Greater Antilles Arc, comprises a 6‐km thick pile of lava and volcanic breccia (Río Majada Group). Preserved within the sequence is a conspicuous shift in absolute abundances of the more incompatible elements, including Th, Nb, and the light rare earth elements (LREE: La, Ce, Pr and Nd). The compositional shift is marked by a decrease in La/Sm from averages of 2.11 in the lowest third of the pile (Formation A) to 1.48 at the top (Formation C), and by a distinctive flattening of LREE segments of chondrite‐normalized REE patterns. i87Sr/86Sr and ?Nd average about 0.7035 and 8.2, respectively, in early Formation A basalts. These ranges normally overlap samples from later Formations B and C. Isotope compositions of the latter group are more variable, however, and several samples are considerably more radiogenic than Formation A basalts, such that i87Sr/86Sr averages almost 0.7042 while ?Nd‐values decrease to 7.5 in Formation B and C basalts. Theoretical models of non‐modal melting processes in both amphibole peridotite and spinel lherzolite sources provide insight into the origin of depleted Th, Nb, and LREE abundances in Puerto Rican basalts. Low Nb concentrations less than normal mid‐oceanic ridge basalts in Formation A basalts indicate the wedge was slightly depleted by low‐volume decompression fusion due to induced convection in the back‐arc region prior to entry of the source into the arc melting zone. However, depleted patterns in Formation C basalts cannot be generated by relatively greater degrees of decompression fusion in the back‐arc, because addition of the La‐enriched slab‐derived component to more depleted source material invariably produces elevated rather than decreased La/Sm. Refluxing of Formation A harzburgitic residua is similarly precluded. In contrast, the observed patterns are readily reproduced by multistage melting models involving hybridized sources containing normal Formation A lherzolite source material blended with recycled, unrefluxed harzburgite residua. Successful models require hybrid sources containing large volumes of recycled harzburgite (up to 50%) during generation of Formation C basalts. Slightly elevated radiometric Sr and Nd isotopes in a few flows from Formation C are attributed to partial refluxing of the hybrid sources within the wedge.  相似文献   
743.
Field observations on ground motions from recent earthquakes imply that current knowledge is limited with regard to relating vertical and horizontal motions at liquefiable sites. This paper describes a study with the purpose of clarifying this emerging issue to some extent. A series of numerical analyses is carried out on a liquefiable soil deposit with a verified, fully coupled, nonlinear procedure. It is shown that the transformation of vertical motions in the deposit differs considerably from the transformation of horizontal motions. Both the amplitude and frequency content of the horizontal motions are strongly dependent on the shaking level or the associated nonlinear soil behavior. The transfer function for vertical motions is however likely to be independent of the intensity of input motions; no reduction in the amplitude occurs even in the case of strong shaking. The results are shown to be in consistence with the laboratory observations on shaking table tests and recent field observations that less nonlinearity exists for vertical motions. It is also shown that the possibility exists for using information on spectral ratios between the horizontal and vertical surface motions to quickly identify in situ soil behavior and liquefaction that are not readily covered by conventional field or laboratory experimentation procedures.  相似文献   
744.
745.
Little is known about centennial- to millennial-scale climate variability during interglacial times, other than the Holocene. We here present high-resolution evidence from anoxic (unbioturbated) sediments in the eastern Mediterranean Sea that demonstrates a sustained ∼800-yr climate disturbance in the monsoonal latitudes during the Eemian interglacial maximum (∼125 ka BP). Results imply that before and after this event, the Intertropical Convergence Zone (ITCZ) penetrated sufficiently beyond the central Saharan watershed (∼21°N) during the summer monsoon to fuel flooding into the Mediterranean along the wider North African margin, through fossil river/wadi systems that to date have been considered only within a Holocene context. Relaxation in the ITCZ penetration during the intra-Eemian event curtailed this flux, but flow from the Nile - with its vast catchment area - was not affected. Previous work suggests a concomitant Eurasian cooling event, with intensified impact of the higher-latitude climate on the Mediterranean basin. The combined signals are very similar to those described for the Holocene cooling event around 8 ka BP. The apparent type of concurrent changes in the monsoon and higher-latitude climate may reflect a fundamental mechanism for variability in the transfer of energy (latent heat) between the tropics and higher latitudes.  相似文献   
746.
A cellular model of Holocene upland river basin and alluvial fan evolution   总被引:1,自引:0,他引:1  
The CAESAR (Cellular Automaton Evolutionary Slope And River) model is used to simulate the Holocene development of a small upland catchment (4·2 km2) and the alluvial fan at its base. The model operates at a 3 m grid scale and simulates every flood over the last 9200 years, using a rainfall record reconstructed from peat bog wetness indices and land cover history derived from palynological sources. Model results show that the simulated catchment sediment discharge above the alluvial fan closely follows the climate signal, but with an increase in the amplitude of response after deforestation. The important effects of sediment storage and remobilization are shown, and findings suggest that soil creep rates may be an important control on long term (>1000 years) temperate catchment sediment yield. The simulated alluvial fan shows a complex and episodic behaviour, with frequent avulsions across the fan surface. However, there appears to be no clear link between fan response and climate or land use changes suggesting that Holocene alluvial fan dynamics may be the result of phases of sediment storage and remobilization, or instabilities and thresholds within the fan itself. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
747.
A series of effective stress analyses is carried out on the seismic performance of river dikes based on the case histories during the 1993 Hokkaido-Nansei-oki and 1995 Hyogoken-Nambu earthquakes in Japan. Seven case histories selected for the analyses involve a crest settlement ranging from none to 2.7 m in the dikes 3–6 m high with evidence of liquefaction at foundation soil. The effective stress model used is based on a multiple shear mechanism and was developed by one of the authors. The soil parameters are evaluated based on the site investigation and laboratory test results. The results of the analyses are basically consistent with the observed performance of the river dikes. In particular, the effective stress model shows a reasonable capability to reproduce the varying degree of settlements depending on the geotechnical conditions of foundation soils beneath the dikes. The analyses also indicate that the effect of a cohesive soil layer mixed with the liquefiable sand layers beneath the dikes can be a primary factor for reducing the liquefaction-induced deformation of dikes.  相似文献   
748.
We have determined the production yields for radionuclides in Al2O3, SiO2, S, Ar, K2SO4, CaCO3, Fe, Ni and Cu targets, which were irradiated with slow negative muons at the Paul Scherrer Institute in Villigen (Switzerland). The fluences of the stopped negative muons were determined by measuring the muonic X-rays. The concentrations of the long-lived and short-lived radionuclides were measured with accelerator mass spectrometry (AMS) and γ-spectroscopy, respectively. Special emphasis was put on the radionuclides 10Be, 14C and 26Al produced in quartz targets, 26Al in Al2O3 and S targets, 36Cl in K2SO4 and CaCO3 targets, and 53Mn in Fe2O3 targets. These targets were selected because they are also the naturally occurring target minerals for cosmic ray interactions in typical rocks. We also present results of calculations for depth-dependent production rates of radionuclides produced after cosmic ray μ capture, as well as cosmic ray-induced production rates of geologically relevant radionuclides produced by the nucleonic component, by μ capture, by fast muons and by neutron capture.  相似文献   
749.
The structure of the Mid-Atlantic Ridge at 5°S was investigated during a recent cruise with the FS Meteor. A major dextral transform fault (hereafter the 5°S FZ) offsets the ridge left-laterally by 80 km. Just south of the transform and to the west of the median valley, the inside corner (IC – the region bounded by the ridge and the active transform) is marked by a major massif, characterized by a corrugated upper surface. Fossil IC massifs can also be identified further to the west. Unusually, a massif almost as high as the IC massif also characterizes the outside corner (OC) south of the inactive fracture zone and to the east of the median valley. This OC massif has axis-parallel dimensions identical to the IC massif and both are bounded on their sides closest to the spreading axis by abrupt, steep slopes. An axial volcanic ridge is well developed in the median valley both south of the IC/OC massifs and in an abandoned rift valley to the east of the OC massif, but is absent along the new ridge-axis segment between the IC and OC massifs. Wide-angle seismic data show that between the massifs, the crust of the median valley thins markedly towards the FZ. These observations are consistent with the formation of the OC massif by the rifting of an IC core complex and the development of a new spreading centre between the IC and OC massifs. The split IC massif presents an opportunity to study the internal structure of the footwall of a detachment fault, from the corrugated fault surface to deeper beneath the fault, without recourse to drilling. Preliminary dredging recovered gabbros from the scarp slope of the rifted IC massif, and serpentinites and gabbros from the intersection of this scarp with the corrugated surface. This is compatible with a concentration of serpentinites along the detachment surface, even where the massif internally is largely plutonic in nature.  相似文献   
750.
Shallow seismicity and available source mechanisms in the Andaman–westSunda arc and Andaman sea region suggest distinct variation in stressdistribution pattern both along and across the arc in the overriding plate.Seismotectonic regionalisation indicates that the region could be dividedinto eight broad seismogenic sources of relatively homogeneousdeformation. Crustal deformation rates have been determined for each oneof these sources based on the summation of moment tensors. The analysisshowed that the entire fore arc region is dominated by compressive stresseswith compression in a mean direction of N23°, and the rates ofseismic deformation velocities in this belt decrease northward from 5.2± 0.65 mm/yr near Nias island off Sumatra and 1.12 ±0.13 mm/yr near Great Nicobar islands to as much as 0.4 ±0.04 mm/yr north of 8°N along Andaman–Nicobar islandsregion. The deformation velocities indicate, extension of 0.83 ±0.05 mm/yr along N343° and compression of 0.19 ±0.01 mm/yr along N73° in the Andaman back arc spreadingregion, extension of 0.18 ± 0.01 mm/yr along N125° andcompression of 0.16 ± 0.01 mm/yr along N35° in NicobarDeep and west Andaman fault zone, compression of 0.84 ±0.12 mm/yr N341° and extension of 0.77 ± 0.11 mm/yralong N72° within the transverse tectonic zone in the Andamantrench, N-S compression of 3.19 ± 0.29 mm/yr and an E-Wextension of 1.24 ± 0.11 mm/yr in the Semangko fault zone ofnorth Sumatra. The vertical deformation suggests crustal thinning in theAndaman sea and crustal thickening in the fore arc and Semangko faultzones. The apparent stresses calculated for all major events range between0.1–10 bars and the values increase with increasing seismic moment.However, the apparent stress estimates neither indicate any significantvariation with faulting type nor display any variation across the arc, incontrast to the general observation that the fore arc thrust events showhigher stress levels in the shallow subduction zones. It is inferred that theoblique plate convergence, partial subduction of 90°E Ridge innorth below the Andaman trench and the active back arc spreading are themain contributing factors for the observed stress field within the overridingplate in this region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号