首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6185篇
  免费   601篇
  国内免费   161篇
测绘学   260篇
大气科学   678篇
地球物理   2179篇
地质学   2452篇
海洋学   424篇
天文学   452篇
综合类   190篇
自然地理   312篇
  2023年   7篇
  2022年   17篇
  2021年   38篇
  2020年   28篇
  2019年   30篇
  2018年   478篇
  2017年   402篇
  2016年   314篇
  2015年   197篇
  2014年   155篇
  2013年   188篇
  2012年   686篇
  2011年   482篇
  2010年   186篇
  2009年   197篇
  2008年   196篇
  2007年   155篇
  2006年   165篇
  2005年   864篇
  2004年   900篇
  2003年   679篇
  2002年   193篇
  2001年   84篇
  2000年   58篇
  1999年   26篇
  1998年   20篇
  1997年   26篇
  1996年   20篇
  1995年   13篇
  1994年   6篇
  1993年   6篇
  1992年   5篇
  1991年   15篇
  1990年   12篇
  1989年   6篇
  1987年   6篇
  1984年   3篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1980年   4篇
  1978年   3篇
  1976年   4篇
  1975年   4篇
  1973年   3篇
  1972年   3篇
  1965年   3篇
  1956年   4篇
  1955年   3篇
  1954年   4篇
排序方式: 共有6947条查询结果,搜索用时 203 毫秒
111.
112.
113.
Microstructure observations in the upper layer of the South China Sea   总被引:1,自引:1,他引:0  
A general pattern for turbulent mixing in the upper layer of the South China Sea (SCS) is presented based on TurboMAP measurements in April and May 2010. The turbulence level decreased significantly overall from north to south, and weakened from east to west in the northern SCS. The average dissipation rate north of 18°N reaches 1.69 × 10?8 W/kg, approximately six times larger than that south of 18°N. The mean mixing efficiency in the SCS is 0.2, with a maximum of 0.31 near the Luzon Strait. At one repeatedly occupied station located in the central deep basin, the dissipation rate varies diurnally in the mixed layer and pycnocline due to diurnal heating and cooling by solar radiation and local barotropic tide, respectively.  相似文献   
114.
Microwave satellite images used for retrieving sea surface temperatures often have such distortions as noise and blurring of the thermal fronts. An image processing approach based on the Mumford-Shah model of optimal image approximation is considered for the solution to this problem. We divide images into flat areas and frontal zones, and then process these areas separately. Image fragmentation is based on automatic detection of the thermal front lines. SST enhancement in frontal zones is achieved by using image deconvolution methods. It has been shown that SST errors in high gradient areas reach 1–3 °C. The proposed approach can decrease this discrepancy.  相似文献   
115.
Intensive observations using hydrographical cruises and moored sediment trap deployments during 2010 and 2012 at station K2 in the North Pacific Western Subarctic Gyre (WSG) revealed seasonal changes in δ 15N of both suspended and settling particles. Suspended particles (SUS) were collected from depths between the surface and 200 m; settling particles by drifting sediment traps (DST; 100–200 m) and moored sediment traps (MST; 200 and 500 m). All particles showed higher δ 15N values in winter and lower in summer, contrary to the expected by isotopic fractionation during phytoplankton nitrate consumption. We suggest that these observed isotopic patterns are due to ammonium consumption via light-controlled nitrification, which could induce variations in δ 15N(SUS) of 0.4–3.1 ‰ in the euphotic zone (EZ). The δ 15N(SUS) signature was reflected by δ 15N(DST) despite modifications during biogenic transformation from suspended particles in the EZ. δ 15N enrichment (average: 3.6 ‰) and the increase in C:N ratio (by 1.6) in settling particles suggests year-round contributions of metabolites from herbivorous zooplankton as well as TEPs produced by diatoms. Accordingly, seasonal δ 15N(DST) variations of 2.4–7.0 ‰ showed a significant correlation with primary productivity (PP) at K2. By applying the observed δ 15N(DST) vs. PP regression to δ 15N(MST) of 1.9–8.0 ‰, we constructed the first annual time-series of PP changes in the WSG. This new approach to estimate productivity can be a powerful tool for further understanding of the biological pump in the WSG, even though its validity needs to be examined carefully.  相似文献   
116.
The future regional sea level (RSL) rise in the western North Pacific is investigated by dynamical downscaling with the Regional Ocean Modeling System (ROMS) with an eddy-permitting resolution based on three global climate models—MIROC-ESM, CSIRO-Mk3.6.0, and GFDL-CM3—under the highest greenhouse-gas emission scenario. The historical run is forced by the air-sea fluxes calculated from Coordinated Ocean Reference Experiment version 2 (COREv2) data. Three future runs—ROMS-MIROC, ROMS-CSIRO, and ROMS-GFDL—are forced with an atmospheric field constructed by adding the difference between the climate model parameters for the twenty-first and twentieth century to fields in the historical run. In all downscaling, the RSL rise along the eastern coast of Japan is generally half or less of the RSL rise maxima off the eastern coast. The projected regional (total) sea level rises along the Honshu coast during 2081–2100 relative to 1981–2000 are 19–25 (98–104), 6–15 (71–80), and 8–14 (80–86) cm in ROMS-MIROC, ROMS-CSIRO, and ROMS-GFDL, respectively. The discrepancies of the RSL rise along the Honshu coast between the climate models and downscaling are less than 10 cm. The RSL changes in the Kuroshio Extension (KE) region in all downscaling simulations are related to the changes of KE (northward shift or intensification) with climate change.  相似文献   
117.
Geochemistry and environmental tracers were used to understand groundwater resources, recharge processes, and potential sources of contamination in the Rio Actopan Basin, Veracruz State, Mexico. Total dissolved solids are lower in wells and springs located in the basin uplands compared with those closer to the coast, likely associated with rock/water interaction. Geochemical results also indicate some saltwater intrusion near the coast and increased nitrate near urban centers. Stable isotopes show that precipitation is the source of recharge to the groundwater system. Interestingly, some high-elevation springs are more isotopically enriched than average annual precipitation at higher elevations, indicating preferential recharge during the drier but cooler winter months when evapotranspiration is reduced. In contrast, groundwater below 1,200 m elevation is more isotopically depleted than average precipitation, indicating recharge occurring at much higher elevation than the sampling site. Relatively cool recharge temperatures, derived from noble gas measurements at four sites (11–20 °C), also suggest higher elevation recharge. Environmental tracers indicate that groundwater residence time in the basin ranges from 12,000 years to modern. While this large range shows varying groundwater flowpaths and travel times, ages using different tracer methods (14C, 3H/3He, CFCs) were generally consistent. Comparing multiple tracers such as CFC-12 with CFC-113 indicates piston-flow to some discharge points, yet binary mixing of young and older groundwater at other points. In summary, groundwater within the Rio Actopan Basin watershed is relatively young (Holocene) and the majority of recharge occurs in the basin uplands and moves towards the coast.  相似文献   
118.
In the southwestern United States, precipitation in the high mountains is a primary source of groundwater recharge. Precipitation patterns, soil properties and vegetation largely control the rate and timing of groundwater recharge. The interactions between climate, soil and mountain vegetation thus have important implications for the groundwater supply. This study took place in the Sacramento Mountains, which is the recharge area for multiple regional aquifers in southern New Mexico. The stable isotopes of oxygen and hydrogen were used to determine whether infiltration of precipitation is homogeneously distributed in the soil or whether it is partitioned among soil-water ‘compartments’, from which trees extract water for transpiration as a function of the season. The results indicate that “immobile” or “slow” soil water, which is derived primarily from snowmelt, infiltrates soils in a relatively uniform fashion, filling small pores in the shallow soils. “Mobile” or “fast” soil water, which is mostly associated with summer thunderstorms, infiltrates very quickly through macropores and along preferential flow paths, evading evaporative loss. It was found that throughout the entire year, trees principally use immobile water derived from snowmelt mixed to differing degrees with seasonally available mobile-water sources. The replenishment of these different water pools in soils appears to depend on initial soil-water content, the manner in which the water was introduced to the soil (snowmelt versus intense thunderstorms), and the seasonal variability of the precipitation and evapotranspiration. These results have important implications for the effect of climate change on recharge mechanisms in the Sacramento Mountains.  相似文献   
119.
Estuarine rearing has been shown to enhance within watershed biocomplexity and support growth and survival for juvenile salmon (Oncorhynchus sp.). However, less is known about how growth varies across different types of wetland habitats and what explains this variability in growth. We focused on the estuarine habitat use of Columbia River Chinook salmon (Oncorhynchus tshawytscha), which are listed under the Endangered Species Act. We employed a generalized linear model (GLM) to test three hypotheses: (1) juvenile Chinook growth was best explained by temporal factors, (2) habitat, or (3) demographic characteristics, such as stock of origin. This study examined estuarine growth rate, incorporating otolith microstructure, individual assignment to stock of origin, GIS habitat mapping, and diet composition along ~130 km of the upper Columbia River estuary. Juvenile Chinook grew on average 0.23 mm/day in the freshwater tidal estuary. When compared to other studies in the basin our growth estimates from the freshwater tidal estuary were similar to estimates in the brackish estuary, but ~4 times slower than those in the plume and upstream reservoirs. However, previous survival studies elucidated a possible tradeoff between growth and survival in the Columbia River basin. Our GLM analysis found that variation in growth was best explained by habitat and an interaction between fork length and month of capture. Juvenile Chinook salmon captured in backwater channel habitats and later in the summer (mid-summer and late summer/fall subyearlings) grew faster than salmon from other habitats and time periods. These findings present a unique example of the complexity of understanding the influences of the many processes that generate variation in growth rate for juvenile anadromous fish inhabiting estuaries.  相似文献   
120.
In 2008, the stable seagrass beds of the Mira estuary (SW Portugal) disappeared completely; however, during 2009, they have begun to present early symptoms of natural recovery, characterised by a strongly heterogeneous distribution. This study was designed to investigate the spatial and temporal variability patterns of species composition, densities and trophic composition of the benthic nematode assemblages in this early recovery process, at two sampling sites with three stations each and at five sampling occasions. Because of the erratic and highly patchy seagrass recovery and the high environmental similarity of the two sampling sites, we expected within-site variability in nematode assemblages to exceed between-site variability. However, contrary to that expectation, whilst nematode genus composition was broadly similar between sites, nematode densities differed significantly between sites, and this between-site variability exceeded within-site variability. This may be linked to differences in the Zostera recovery patterns between both sites. In addition, no clear temporal patterns of nematode density, trophic composition and diversity were evident. Nematode assemblages generally resembled those of other estuarine muddy intertidal areas, which have a high tolerance of stress conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号