首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
测绘学   1篇
大气科学   1篇
地球物理   9篇
地质学   29篇
天文学   4篇
自然地理   1篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   2篇
  2011年   6篇
  2010年   1篇
  2009年   2篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1986年   1篇
排序方式: 共有45条查询结果,搜索用时 31 毫秒
31.
Dunitic xenoliths from late Palaeogene, alkaline basalt flows on Ubekendt Ejland, West Greenland contain olivine with 100 × Mg/(Mg + Fe), or Mg#, between 92.0 and 93.7. Orthopyroxene has very low Al2O3 and CaO contents (0.024–1.639 and 0.062–0.275 wt%, respectively). Spinel has 100 × Cr/(Cr + Al), or Cr#, between 46.98 and 95.67. Clinopyroxene is absent. The osmium isotopic composition of olivine and spinel mineral separates shows a considerable span of 187Os/188Os values. The most unradiogenic 187Os/188Os value of 0.1046 corresponds to a Re-depletion age of ca. 3.3 Gy, while the most radiogenic value of 0.1336 is higher than present-day chondrite. The Os isotopic composition of the xenoliths is consistent with their origin as restites from a melt extraction event in the Archaean, followed by one or more subsequent metasomatic event(s). The high Cr# in spinel and low modal pyroxene of the Ubekendt Ejland xenoliths are similar to values of some highly depleted mantle peridotites from arc settings. However, highly depleted, arc-related peridotites have higher Cr# in spinel for a given proportion of modal olivine, compared to cratonic xenolith suites from Greenland, which instead form coherent trends with abyssal peridotites, dredged from modern mid-ocean ridges. This suggests that depleted cratonic harzburgites and dunites from shallow lithospheric mantle represent the residue from dry melting in the Archaean.  相似文献   
32.
We report major and trace element abundances and Sr, Nd andPb isotopic data for Miocene (16·5–11 Ma) calc-alkalinevolcanic rocks from the western segment of the Carpathian arc.This volcanic suite consists mostly of andesites and dacites;basalts and basaltic andesites as well as rhyolites are rareand occur only at a late stage. Amphibole fractionation bothat high and low pressure played a significant role in magmaticdifferentiation, accompanied by high-pressure garnet fractionationduring the early stages. Sr–Nd–Pb isotopic dataindicate a major role for crustal materials in the petrogenesisof the magmas. The parental mafic magmas could have been generatedfrom an enriched mid-ocean ridge basalt (E-MORB)-type mantlesource, previously metasomatized by fluids derived from subductedsediment. Initially, the mafic magmas ponded beneath the thickcontinental crust and initiated melting in the lower crust.Mixing of mafic magmas with silicic melts from metasedimentarylower crust resulted in relatively Al-rich hybrid dacitic magmas,from which almandine could crystallize at high pressure. Theamount of crustal involvement in the petrogenesis of the magmasdecreased with time as the continental crust thinned. A strikingchange of mantle source occurred at about 13 Ma. The basalticmagmas generated during the later stages of the calc-alkalinemagmatism were derived from a more enriched mantle source, akinto FOZO. An upwelling mantle plume is unlikely to be presentin this area; therefore this mantle component probably residesin the heterogeneous upper mantle. Following the calc-alkalinemagmatism, alkaline mafic magmas erupted that were also generatedfrom an enriched asthenospheric source. We propose that bothtypes of magmatism were related in some way to lithosphericextension of the Pannonian Basin and that subduction playedonly an indirect role in generation of the calc-alkaline magmatism.The calc-alkaline magmas were formed during the peak phase ofextension by melting of metasomatized, enriched lithosphericmantle and were contaminated by various crustal materials, whereasthe alkaline mafic magmas were generated during the post-extensionalstage by low-degree melting of the shallow asthenosphere. Thewestern Carpathian volcanic areas provide an example of long-lastingmagmatism in which magma compositions changed continuously inresponse to changing geodynamic setting. KEY WORDS: Carpathian–Pannonian region; calc-alkaline magmatism; Sr, Nd and Pb isotopes; subduction; lithospheric extension  相似文献   
33.
Seismic reflection and refraction data acquired on four transects spanning the Southeast Greenland rifted margin and Greenland–Iceland Ridge (GIR) provide new constraints on mantle thermal structure and melting processes during continental breakup in the North Atlantic. Maximum igneous crustal thickness varies along the margin from >30 km in the near-hotspot zone (<500 km from the hotspot track) to 18 km in the distal zone (500–1100 km). Magmatic productivity on summed conjugate margins of the North Atlantic decreases through time from 1800±300 to 600±50 km3/km/Ma in the near-hotspot zone and from 700±200 to 300±50 km3/km/Ma in the distal zone. Comparison of our data with the British/Faeroe margins shows that both symmetric and asymmetric conjugate volcanic rifted margins exist. Joint consideration of crustal thickness and mean crustal seismic velocity suggests that along-margin changes in magmatism are principally controlled by variations in active upwelling rather than mantle temperature. The thermal anomaly (ΔT) at breakup was modest (100–125°C), varied little along the margin, and transient. Data along the GIR indicate that the potential temperature anomaly (125±50°C) and upwelling ratio (4 times passive) of the Iceland hotspot have remained roughly constant since 56 Ma. Our results are consistent with a plume–impact model, in which (1) a plume of radius 300 km and ΔT of 125°C impacted the margin around 61 Ma and delivered warm material to distal portions of the margin; (2) at breakup (56 Ma), the lower half of the plume head continued to feed actively upwelling mantle into the proximal portion of the margin; and (3) by 45 Ma, both the remaining plume head and the distal warm layer were exhausted, with excess magmatism thereafter largely confined to a narrow (<200 km radius) zone immediately above the Iceland plume stem. Alternatively, the warm upper mantle layer that fed excess magmatism in the distal portion of the margin may have been a pre-existing thermal anomaly unrelated to the plume.  相似文献   
34.
35.
The loess–palaeosol sequence of Batajnica (Vojvodina region, Serbia) is considered as one of the most complete and thickest terrestrial palaeoclimate archives for the Middle and Late Pleistocene. In order to achieve a numerical chronology for this profile, four sets of ages were obtained on 18 individual samples. Equivalent doses were determined using the SAR protocol on fine (4–11 μm) and coarse (63–90 μm) quartz fractions, as well as on polymineral fine grains by using two elevated temperature infrared stimulation methods, pIRIR290 and pIRIR225. We show that the upper age limit of coarse quartz OSL and polymineral pIRIR290 and pIRIR225 techniques is restricted to the Last Glacial/Interglacial cycle due to the field saturation of the natural signals. Luminescence ages on coarse quartz, pIRIR225 and pIRIR290 polymineral fine grains are in general agreement. Fine quartz ages are systematically lower than the coarse quartz and pIRIR ages, the degree of underestimation increasing with age. Comparison between natural and laboratory dose response curves indicate the age range over which each protocol provides reliable ages. For fine and coarse quartz, the natural and laboratory dose response curves overlap up to ~150 and ~250 Gy, respectively, suggesting that the SAR protocol provides reliable ages up to c. 50 ka on fine quartz and c. 100 ka on coarse quartz. Using the pIRIR225 and pIRIR290 protocols, equivalent doses up to ~400 Gy can be determined, beyond which in the case of the former the natural dose response curve slightly overestimates the laboratory dose response curve. Our results suggest that the choice of the mineral and luminescence technique to be used for dating loess sediments should take into consideration the reported limited reliability.  相似文献   
36.
Late Pleistocene tephras derived by large explosive volcanic eruptions are widespread in the Mediterranean and surrounding areas. They are important isochronous markers in stratigraphic sections and therefore it is important to constrain their sources. We report here tephrochronology results using multiple criteria to characterize the volcanic products of the Late Pleistocene Ciomadul volcano in eastern–central Europe. This dacitic volcano had an explosive eruption stage between 57 and 30 ka. The specific petrological character (ash texture, occurrence of plagioclase and amphibole phenocrysts and their compositions), the high-K calc-alkaline major element composition and particularly the distinct trace element characteristics provide a strong fingerprint of the Ciomadul volcano. This can be used for correlating tephra and cryptotephra occurrences within this timeframe. Remarkably, during this period several volcanic eruptions produced tephras with similar glass major element composition. However, they differ from Ciomadul tephras by glass trace element abundances, ratios of strongly incompatible trace elements and their mineral cargo that serve as discrimination tools. We used (U-Th)/He zircon dates combined with U-Th in situ rim dates along with luminescence and radiocarbon dating to constrain the age of the explosive eruptions of Ciomadul that yielded distal tephra layers but lack of identified proximal deposits.  相似文献   
37.
Spectral observations of 53 H-emission objects of the HII-region IC 1396 were carried out with moderate resolution using the 2.6m telescope of the Byurakan Astrophysical Observatory. Factor analysis of this observational material indicates that there are two dominant factors. Factor 1 (Fig. 1), which is the more significant factor, resembles the spectrum of a star of spectral type F5 with a strong H line in absorption. Factor 2 (Fig. 2), in contrast, appears as a later-type spectrum with H and H in emission. The result obtained can be explained by the transient nature of the H-emission.Translated fromAstrofizika, Vol. 37, No. 3, 1994.  相似文献   
38.
Depletion of Nb relative to K and La is characteristic of lavas in subduction-related magmatic arcs, as distinct from mid-ocean ridge basalts. Nb depletion is also characteristic of the continental crust. This and other geochemical similarities between the continental crust and high-Mg# andesite magmas found in arcs suggests that the continental crust may have formed by accretion of andesites. Previous studies have shown that the major element characteristics of high-Mg# andesites may be produced by melt/rock reaction in the upper mantle. In this paper, new data on partitioning of K, Nb, La and Ce between garnet, orthopyroxene and clinopyroxene in mantle xenoliths, and on partitioning of Nb and La between orthopyroxene and liquid, show that garnet and orthopyroxene have Nb crystal/liquid distribution coefficients which are much larger than those of K and La. Similar fractionations of Nb from K and La are expected in spinel and olivine. For this reason, reactions between migrating melt and large masses of mantle peridotite can produce substantial depletion of Nb in derivative liquids. Modeling shows that reaction between ascending, mantle-derived melts and mantle peridotite is a viable mechanism for producing the trace element characteristics of high-Mg# andesite magmas and the continental crust.

Alternatively, small-degree melts of metabasalt and/or metasediment in the subducting slab may leave rutile in their residue, and will thus have large Nb depletions relative to K and La [1]. Slab melts are too rich in light rare earth elements and other incompatible elements, and too poor in compatible elements, to be parental to arc magmas. However, ascending slab melts may be modified by reaction with the mantle. Our new data permit modeling of the trace element effects of reaction between small-degree melts of the slab and mantle peridotite. Modeling shows that this type of reaction is also a viable mechanism for producing the trace element characteristics of high-Mg# andesites and the continental crust. These findings, in combination with previous results, suggest that melt/rock reaction in the upper mantle has been an important process in forming the continental crust and mantle lithosphere.  相似文献   

39.
40.
The lava section in the Troodos ophiolite, Cyprus, is chemically stratified and divided into a shallow lava sequence with low TiO2 content and a deeper lava sequence with high TiO2 content. We calculate the viscosity at magmatic temperature based on major element chemistry of lavas in Cyprus Crustal Study Project (CCSP) Holes CY-1 and 1A. We find that typical shallow low-Ti lavas have a magmatic viscosity that is two to three orders of magnitude lower than that of the deeper high-Ti lavas. This implies that, after eruption on-axis, Troodos low-Ti lavas would have been able to flow down the same slope faster and farther than high-Ti lavas. The calculated lava viscosity increases systematically from the lava-sediment interface to the bottom of the composite Hole CY-1/1A. This suggests that an efficient process of lava segregation by viscosity on the upper flanks of the paleo Troodos rise may have been responsible for the chemical stratification in the Troodos lava pile. Calculated magmatic temperature and molar Mg/(Mg+Fe), or Mg#, decrease systematically down-section, while SiO2 content increases. Correlation of Mg# in the lavas with Mg# in the underlying, lower crustal plutonic rocks sampled by CCSP Hole CY-4 shows that the shallow lavas came from a high-temperature, lower crustal magma reservoir which is now represented by high-Mg# pyroxenite cumulates, while the deeper lavas were erupted from a lower-temperature, mid-crustal reservoir which is now represented by gabbroic cumulates with lower Mg#.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号