首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   13篇
  国内免费   2篇
测绘学   5篇
大气科学   19篇
地球物理   54篇
地质学   48篇
海洋学   8篇
天文学   26篇
自然地理   5篇
  2023年   1篇
  2021年   6篇
  2020年   3篇
  2019年   8篇
  2018年   10篇
  2017年   12篇
  2016年   7篇
  2015年   8篇
  2014年   11篇
  2013年   9篇
  2012年   19篇
  2011年   11篇
  2010年   4篇
  2009年   11篇
  2008年   5篇
  2007年   7篇
  2006年   4篇
  2005年   3篇
  2004年   6篇
  2002年   6篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1992年   1篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
排序方式: 共有165条查询结果,搜索用时 15 毫秒
131.
Open-cast mining for Ni, Cr and Co was conducted in the south-west part of New Caledonia during the 20th century. Abandoned mining and prospecting sites were severely affected by erosion, resulting in an increase in the load of terrigenous particles transported to the coral reef lagoon. This article assesses the impact of a typical small catchment area (La Coulée River, 85 km2 watershed) on two bays (Boulari and Sainte Marie) located near Noumea, New Caledonia's main city. This multi-disciplinary study combines geochemical, sedimentological, and hydrodynamic approaches. Ni and Cr concentrations contained in the geochemical matrix phase of the pelitic fraction were determined. The study of the geochemical signatures together with sedimentological data and 3D numerical simulations of the transport of non-settling particles throughout the lagoon demonstrated that terrigenous inputs from the Coulée River were mainly transported and deposited along the shoreline, reaching areas as distant as Sainte Marie Bay. Although quantitatively low (about 3% of the pelite mass of the bay sediments), the terrigenous inputs in Sainte Marie Bay originating from the Coulée River could be traced. The metal content in suspended matter was over 7000 mg kg(-1) for Ni and 4200 mg kg(-1) for Cr.  相似文献   
132.
Biostratigraphic, sedimentological and provenance analyses suggest that a proto‐Andean Cordillera already existed in southern Peru by late Maastrichtian–late Palaeocene times. A 270‐m‐thick stratigraphic section shows changes in depositional environments from shallow marine (early Maastrichtian) to non‐marine (late Maastrichtian) then back to estuarine (late Palaeocene) conditions. An erosional surface separates lower Maastrichtian from upper Maastrichtian deposits. Above this surface, the late Maastrichtian unit exhibits moderately developed palaeosols and syn‐sedimentary normal faults. The sedimentary evolution is accompanied by a decrease in sedimentation rate and by changes in provenance. Shallow marine lower Maastrichtian deposits have a cratonic provenance as shown by their low εNd(0) values (?15 to ?16) and the presence of Precambrian inherited zircon grains. The upper Maastrichtian deposits have a mixed Andean and cratonic origin with εNd(0) values of ~12.6 and yield the first Cretaceous and Permo‐Triassic zircon grains. Estuarine to shallow marine upper Palaeocene deposits have an Andean dominant source as attested by higher εNd(0) values (?6 to ?10) and by the presence of Palaeozoic and Late Cretaceous zircon grains. The changes in depositional environments and sedimentation rates, as well as the shift in detrital provenance, are consistent with a late Maastrichtian–late Palaeocene period of Andean mountain building. In agreement with recently published studies, our data suggest that an Andean retroarc foreland basin was active by late Maastrichtian–late Palaeocene times.  相似文献   
133.
In this paper, we analyse how the performance and calibration of a distributed event‐based soil erosion model at the hillslope scale is affected by different simplifications on the parameterizations used to compute the production of suspended sediment by rainfall and runoff. Six modelling scenarios of different complexity are used to evaluate the temporal variability of the sedimentograph at the outlet of a 60 m long cultivated hillslope. The six scenarios are calibrated within the generalized likelihood uncertainty estimation framework in order to account for parameter uncertainty, and their performance is evaluated against experimental data registered during five storm events. The Nash–Sutcliffe efficiency, percent bias and coverage performance ratios show that the sedimentary response of the hillslope in terms of mass flux of eroded soil can be efficiently captured by a model structure including only two soil erodibility parameters, which control the rainfall and runoff production of suspended sediment. Increasing the number of parameters makes the calibration process more complex without increasing in a noticeable manner the predictive capability of the model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
134.
Martian regolith breccia NWA 7533 (and the seven paired samples) is unique among Martian meteorites in showing accessory pyrite (up to 1% by weight). Pyrite is a late mineral, crystallized after the final assembly of the breccia. It is present in all of the lithologies, i.e., the fine‐grained matrix (ICM), clast‐laden impact melt rocks (CLIMR), melt spherules, microbasalts, lithic clasts, and mineral clasts, all lacking magmatic sulfides due to degassing. Pyrite crystals show combinations of cubes, truncated cubes, and octahedra. Polycrystalline clusters can reach 200 μm in maximum dimensions. Regardless of their shape, pyrite crystals display evidence of very weak shock metamorphism such as planar features, fracture networks, and disruption into subgrains. The late fracture systems acted as preferential pathways for partial replacement of pyrite by iron oxyhydroxides interpreted as resulting from hot desert terrestrial alteration. The distribution and shape of pyrite crystals argue for growth at moderate to low growth rate from just‐saturated near neutral (6 < pH<10), H2S‐HS‐rich fluids at minimum log fO2 of >FMQ + 2 log units. It is inferred from the maximum Ni contents (4.5 wt%) that pyrite started crystallizing at 400–500 °C, during or shortly after a short‐duration, relatively low temperature, thermal event that lithified and sintered the regolith breccias, 1.4 Ga ago as deduced from disturbance in several isotope systematics.  相似文献   
135.
A shift in climatic conditions may directly modify critical organismal traits (such as reproductive output and offspring phenotypes), and experimental studies to document such direct effects thus may clarify the impacts of climate change on the species involved. The endangered Blue Mountains Water Skink (Eulamprus leuraensis) exhibits several traits predicted to imperil it under climate change: ectothermy, low reproductive output, specialisation to a restricted habitat type, montane endemicity, and a small geographic range. Congeneric species exhibit temperature-dependent sex determination, increasing potential sensitivity to climate change. We maintained wild-caught female lizards throughout pregnancy under thermal conditions simulating a shift in basking-time availability (3 vs 7 h/day) as might occur under climate change. Females with longer basking opportunities per day gave birth 2 weeks earlier, to slightly smaller offspring, that grew much faster in the first few weeks of life. Importantly, offspring sex ratios were not affected by maternal thermal regimes. Hence, some traits (e.g., offspring size, growth rates, dates of birth) are sensitive to ambient thermal conditions whereas other traits (e.g., offspring sex ratio and sprint speed) are not. On balance, the greatest threat to population persistence for E. leuraensis under climate change is likely to involve indirect effects mediated via habitat degradation (especially, drying-out of the hanging swamps) rather than direct thermal effects on lizard reproductive output or offspring phenotypes.  相似文献   
136.
Landscape discontinuities such as forest edges play an important role in determining the characteristics of the atmospheric flow by generating increased turbulence and triggering the formation of coherent tree-scale structures. In a fragmented landscape, consisting of surfaces of different heights and roughness, the multiplicity of edges may lead to complex patterns of flow and turbulence that are potentially difficult to predict. Here, we investigate the effects of different levels of forest fragmentation on the airflow. Five gap spacings (of length approximately 5h, 10h, 15h, 20h, 30h, where h is the canopy height) between forest blocks of length 8.7h, as well as a reference case consisting of a continuous forest after a single edge, were investigated in a wind tunnel. The results reveal a consistent pattern downstream from the first edge of each simulated case, with the streamwise velocity component at tree top increasing and turbulent kinetic energy decreasing as gap size increases, but with overshoots in shear stress and turbulent kinetic energy observed at the forest edges. As the gap spacing increases, the flow appears to change monotonically from a flow over a single edge to a flow over isolated forest blocks. The apparent roughness of the different fragmented configurations also decreases with increasing gap size. No overall enhancement of turbulence is observed at any particular level of fragmentation.  相似文献   
137.
The south-west reef lagoon of New Caledonia is a semi-enclosed basin where, on first approximation, dominating sea state component corresponds to locally generated wind waves. This study aims to evaluate the ability of the wave model WAVEWATCH III to simulate wind wave distribution in this particular fetch-limited context, with a given parameterisation. In order to evaluate the consistency of the simulation results, wave parameters were measured in situ by a wave and tide recorder (WTR9 Aanderaa) and by an acoustic Doppler velocimeter (ADV Sontek). This study underlines specific constrains for the deployment of instruments to assess the characteristic parameters of low amplitude and high frequency wind-waves. Special care was taken in the comparison step as, on one hand the wave model did not simulate the propagation of low-frequency oceanic waves inside the lagoon, and on the other hand the measured spectra bear an intrinsic limitation for high frequencies. The approximation of a sea state dominated by wind waves is verified on the study site. The accuracy of the simulation results is discussed with regards to the wind forcing applied to the model.  相似文献   
138.
The Atlantic Meridional Overturning Circulation (AMOC) is a key feature of the climate system. However, its role during climate change is still poorly constrained particularly during an Interglacial to Glacial climate transition and the associated global cooling. We present here the first reconstruction of the evolution of the vertical structure of the rate of the AMOC from the Last Interglaciation to the subsequent glaciation (128,000–60,000 years ago) based on sedimentary (231Pa/230Th) records. We show a deep AMOC during the interglacial warmth Marine Isotope Stage (MIS) 5.5 and a shallower glacial one during glacial MIS 4. The change between these two patterns occurred mostly during the glacial inception, i.e. the transition from MIS 5.5 to MIS 5.4. Our data show that AMOC was enhanced during this latter transition as a consequence of a large increase of the overturning rate of the Intermediate Waters, above 2500 m. We suggest that this AMOC pattern required a reinforced Gulf Stream-North Atlantic Current system that ultimately supported ice-sheet growth by providing heat and moisture to the Northern high latitudes. From MIS 5.4 to MIS 5.1, the AMOC was broadly continuous below 2000 m and supported periods of ice-sheet growth. As a result, a glacial AMOC is triggered at the beginning of MIS 4 due to the extension of ice-sheet and the subsequent reorganization of deep-water formation. This study highlights the role of intermediate waters as a major player during climate change.  相似文献   
139.
140.
Sustainable urban drainage systems are built along roads and in urban areas to collect urban runoff and avoid flooding, and to filter water pollutants. Sediment collected by runoff is deposited in the stormwater basin and progressively reduces water infiltration efficiency, leading to the clogging of the basin. To help stormwater basin managers and stakeholders better understand and predict clogging rates in order to elaborate maintenance plans and schedules, water transport prediction models are necessary. However,because of the heterogeneous sediment hydrodynamic properties inside the stormwater basin, a twodimensional(2-D) water flow model is required to predict water levels and possible overflow as accurately as possible. Saturated hydraulic conductivity(Ks) and sediment water retention curves were measured in the overall sediment layer of the stormwater basin, in addition to sediment layer thickness and organic matter content(11 sampling points). Sediment depth was used to predict organic matter(OM) content, and the OM was used to predict Ks. Water height in the basin was modeled with the HYDRUS-2 D model by taking into account the sediment hydrodynamic properties distribution. The HYDRUS-2 D model gave a satisfactory representation of the measured data. Scenarios of the hydraulic properties of stormwater basin sediment were tested over time, and hydraulic resistance, R, was calculated to assess the stormwater basin performance. Presently, after 20 years of functioning, the stormwater basin still ensures efficient water infiltration, but the first outflow(Hydraulic resistance,R 24 h)) is expected to appear in the next 5 years, and clogging(R 47 h) in the next 13 years. This 2-D water balance model makes it possible to integrate the hydrodynamic heterogeneity of a stormwater basin. It gives interesting perspectives to better predict 2-D/3-D contaminant transport.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号