首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   25篇
  国内免费   12篇
测绘学   13篇
大气科学   30篇
地球物理   60篇
地质学   161篇
海洋学   16篇
天文学   45篇
综合类   10篇
自然地理   14篇
  2023年   4篇
  2022年   6篇
  2021年   11篇
  2020年   9篇
  2019年   6篇
  2018年   37篇
  2017年   29篇
  2016年   36篇
  2015年   15篇
  2014年   17篇
  2013年   26篇
  2012年   13篇
  2011年   12篇
  2010年   11篇
  2009年   13篇
  2008年   7篇
  2007年   10篇
  2006年   7篇
  2005年   8篇
  2004年   8篇
  2003年   5篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1996年   3篇
  1995年   5篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1987年   2篇
  1986年   2篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   4篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   4篇
  1975年   3篇
  1974年   1篇
  1973年   3篇
排序方式: 共有349条查询结果,搜索用时 81 毫秒
331.
A comprehensive paleoseismological investigations was carried out along Joggers Park Fault (striking NW-SE) reveals pervasive traces of active compressional tectonics (blind thrusting) and shallow-surface recent tectonic signatures along the fault. The geometry and trends in the tectonic deformation of the blind zone (shallow-subsurface stratigraphy) were examined with GPR and electrical resistivity tomography (ERT) and vertical electrical sounding (VES), strongly demonstrates severe tectonic deformation (persistent tectonic style) from Quaternary to Holocene times in a compressive stress regime. The surface manifestation of deformation (topographic expression) along the fault can be marked as hanging wall uplift and can be visually observed in the exposed sections at nearly half kilometer distance from the table land of Joggers Park in the form of a well-defined disconnected high angle thrust fault scarp (reverse fault). The reverse fault kinematically and intimately linked with underlying fault geometry provides adduced evidence to evaluate strike displacement profiles (displacement length relationship) along the fault. In addition, deformed stacked colluvial wedge below the scarp represents a powerful basis to calibrate recent and long term slip rates of the underlying fault.  相似文献   
332.
333.
Sediment discharge due to soil and rock erosion within the watersheds is the major cause of siltation in water reservoirs. Siltation in reservoirs reduces the capacity for power production, irrigation water supply, and other domestic purposes. Hypsometric analysis has widely been used to identifying the geomorphic development stages (stabilized, equilibrium, and un-stable) to assess the erosion proneness of watersheds. In this study, watershed of Kurram Tangi Dam and its four sub-watersheds (SWs) were considered to determine their sediment discharge capacity through hypsometric analysis. The boundaries of watershed and sub-watersheds were delineated from Digital Elevation Model (DEM). The hypsometric parameters i.e., hypsometric integral (HI) and curves were generated using Geographic Information System (GIS) techniques. The HI values of SW-1 (0.41) and SW-2 (0.36) indicated that these two SWs were relatively more prone to erosion and contributed higher sediment discharge in Dam siltation. The results were validated through sampling the main drainage channel (Kurram River) to determine the sediment concentration at 12 sites during summer, winter, and spring seasons. Comparison of HI and sediment concentration of SWs presented high correlation (R2?=?0.87). The results emphasized the effective watershed management, extensive afforestation, and construction of silt-control structures at appropriate locations in sub-watersheds. This will ultimately maintain the water and power generation capacity as well as extending the life span of the Dam.  相似文献   
334.
Groundwater is the most economic natural source of drinking in urban and rural areas which are degraded due to high population growth and increased industrial development. We applied a GIS-based DRASTIC model in a populated urban area of Pakistan (Peshawar) to assess groundwater vulnerability to pollution. Six input parameters—depth to phreatic/groundwater level, groundwater recharge, aquifer material, soil type, slope, and hydraulic conductivity—were used in the model to generate the groundwater vulnerable zones. Each parameter was divided into different ranges or media types, and ratings R?=?1?–?10 were assigned to each factor where 1 represented the very low impact on pollution potential and 10 represented very high impact. Weight multipliers W?=?1?–?5 were also used to balance and enhance the importance of each factor. The DRASTIC model scores obtained varied from 47 to 147, which were divided into three different zones: low, moderate, and high vulnerability to pollution. The final results indicate that about 31.22, 39.50, and 29.27% of the total area are under low, moderate, and high vulnerable zones, respectively. Our method presents a very simple and robust way to assess groundwater vulnerability to pollution and helps the decision-makers to select appropriate landfill sites for waste disposals, and manage groundwater pollution problems efficiently.  相似文献   
335.
The point-vortex equilibrium statistical model of two-layer baroclinic quasigeostrophic vortices in an unbounded f-plane is examined. A key conserved quantity, angular momentum, serves to confine the vortices to a compact domain, thereby justifying the statistical mechanics model, and also eliminating the need for boundary conditions in a practical method for its resolution. The Metropolis method provides a fast and efficient algorithm for solving the mean field non-linear elliptic PDEs of the equilibrium statistical theory. A verification of the method is done by comparison with the exact Gaussian solution at the no interaction limit of zero inverse temperature. The numerical results include a geophysically and computationally relevant power law for the radii at which the most probable vortex distribution is non-vanishing: For fixed total circulation, and fixed average angular momentum, the radii of both layers are proportional to the square root of the inverse temperature β. By changing the chemical potentials μ of the runs, one is able to model the most probable vorticity distributions for a wide range of total circulation and energy. The most probable vorticity distribution obtained at low positive temperatures are consistently close to a radially symmetric flat-top profiles. At high temperatures, the radially symmetric vorticity profiles are close to the Gaussian distribution.  相似文献   
336.
http://www.sciencedirect.com/science/article/pii/S1674987111001265   总被引:3,自引:0,他引:3  
Landscapes in tectonically active Hindu Kush(NW Pakistan and NE Afghanistan) result from a complex integration of the effects of vertical and horizontal crustal block motions as well as erosion and deposition processes.Active tectonics in this region have greatly influenced the drainage system and geomorphic expressions.The study area is a junction of three important mountain ranges (Hindu Kush-Karakorum-Himalayas) and is thus an ideal natural laboratory to investigate the relative tectonic activity resulting from the India-Eurasia collision.We evaluate active tectonics using DEM derived drainage network and geomorphic indices hypsometric integral(HI),stream-length gradient (SL).fractal dimension(FD).basin asymmetry factor(AF).basin shape index(Bs),valley floor width to valley height ratio(Vf) and mountain front sinuosity(Smf). The results obtained from these indices were combined to yield an index of relative active tectonics (IRAT) using CIS.The average of the seven measured geomorphic indices was used to evaluate the distribution of relative tectonic activity in the study area.We defined four classes to define the degree of relative tectonic activity:class 1 very high(1.0≤IRAT 1.3);class 2-high(1.3≥IRAT<1.3):class 3—moderate(1.5≥IRAT<1.8);and class 4—low(l.8≥1RAT).In view of the results.we conclude that this combinetl approach allows the identification of the highly deformed areas related to active tectonics.Landsat imagery and held observations also evidence the presence of active tectonics based on the dellected streams,deformed landforms.active mountain fronts and triangular facets.The indicative values of IRAT are consistent with the areas of known relative uplift rates,landforms and geology.  相似文献   
337.
In arid and semiarid areas, the only surface and groundwater recharge source is the runoff generated through flash floods. Lack of hydrological data in such areas makes runoff estimation extremely complicated. Flash floods are considered catastrophic phenomena posing a major hazardous threat to cities, villages, and their infrastructures. The objective of this study is to assess the flash flood hazard and runoff in Wadi Halyah and its sub-basins. Integration of morphometric parameters, geo-informatics, and hydrological models has been done to overcome the challenge of scarcity of data.Advanced Spaceborne Thermal Emission and Reflection (ASTER) data was used to prepare a digital elevation model (DEM) with 30-m resolution, and geographical information system (GIS) was used in the evaluation of network, geometry, texture, and relief features of the morphometric parameters. Thirty-eight morphometric parameters were estimated and have been linked together for producing nine effective parameters for evaluation of the flash flood hazard in the study basin.Flash flood hazard in Wadi Halyah and its sub-basins was identified and grouped into three classes depending on nine effective parameters directly influencing the flood prone areas. Calculated runoff volume of Wadi Halyah ranges from 26.7 × 106 to 111.4 × 106 m3 with an inundation area of 15 and 27 km2 at return periods of 5 and 100 years, respectively. Mathematical relationships among rainfall depth, runoff volume, infiltration losses, and rainfall excess demonstrate a strong directly proportional relationships with correlation coefficient of about 0.99.  相似文献   
338.
In central Saudi Arabia, the combination of rock types and sedimentary bedding created a unique scarp landscape. The escarpments were formed during Late Miocene through Early Quaternary times. At present, cuesta formation and migration are restricted to the actual escarpments as a consequence of negligible sediment removal. The plains between the escarpments are sealed through periodically active fluvial processes and through eolian sedimentation. In this publication, the major escarpments of central Saudi Arabia are described. The interactions between tectonics, climate, and morphogenesis which created this unique landscape are reviewed.  相似文献   
339.
In this work, we use Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (13C NMR) data to quantify the changes of major chemical compound classes (carboxylic acid, amide, ester, aliphatic, aromatic and carbohydrate) in high molecular weight (HMW, >1 kDa) dissolved organic matter (DOM) isolated along a transect through the Elizabeth River/Chesapeake Bay system to the coastal Atlantic Ocean off Virginia, USA. Results show that carboxylic acids and aromatic compounds are lost along the transect, while HMW DOC becomes enriched in carbohydrate moieties that could have a mid-transect source, perhaps the intensive red tide bloom (Choclodinium polykrikoides) which occurred during our sampling period. Taking the second derivative of the FTIR spectra resolved three pools of de-protonated carboxylic acids at our Dismal Swamp site (used to represent terrestrial organic matter in this area): one carboxylic acid pool, complexed with iron, seems to be lost between the Dismal Swamp and river sites; the second appears biogeochemically active throughout the riverine transect, disappearing in the coastal ocean sample; the third seems refractory, with the potential to be transported to and to accumulate within the open ocean. Five-member ring esters (γ-lactones) were the major ester form in the Dismal Swamp; aliphatic and acetate esters were the dominant esters in the estuary/marine DOM. No amide groups were detectable in Dismal Swamp DOM; secondary amides were present at the estuarine/marine sites. Coupling FTIR with 13C NMR provides new insights into the biogeochemical roles of carboxylic acid, amide and ester compounds in aquatic ecosystems.  相似文献   
340.
Large-scale geological features have been identified by satellite imagery and global positioning system data in the Wajid Sandstone in Saudi Arabia. The main objective is to evaluate the importance of fractures for the overall flow behaviour in this fractured rock aquifer and to estimate in-situ hydraulic apertures. Data on fractures and lineaments were available for three outcrops. By applying a “cut-out” routine on the fracture endpoint data of these fracture trace windows, three deterministic discrete fracture networks (DFN), with an area of 100 m?×?100 m, could be generated. These were used to simulate the fracture flow and to determine the hydraulic conductivity tensors. Using additional data on hydraulic pumping tests and matrix conductivities, in-situ hydraulic apertures could be determined. Average in-situ hydraulic apertures range from 1,300 to 1,700 µm. Observations from the field support these results. In addition, a hydraulic conductivity ratio between the matrix and fracture system was used to identify the contribution of the DFN to the overall fluid transport. A ratio of 10.4 was determined, which indicates that the effective flow behaviour in the Wajid Sandstone aquifer is not entirely dominated by the fracture system, though evidently strongly controlled by it.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号