首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   10篇
  国内免费   5篇
测绘学   3篇
大气科学   10篇
地球物理   71篇
地质学   152篇
海洋学   35篇
天文学   26篇
自然地理   30篇
  2021年   4篇
  2020年   5篇
  2019年   12篇
  2018年   8篇
  2017年   6篇
  2016年   5篇
  2015年   11篇
  2014年   13篇
  2013年   17篇
  2012年   27篇
  2011年   21篇
  2010年   16篇
  2009年   20篇
  2008年   20篇
  2007年   19篇
  2006年   9篇
  2005年   6篇
  2004年   14篇
  2003年   9篇
  2002年   10篇
  2001年   5篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   5篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1988年   2篇
  1985年   7篇
  1984年   7篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   4篇
  1973年   1篇
  1965年   1篇
  1960年   1篇
  1957年   1篇
  1950年   1篇
排序方式: 共有327条查询结果,搜索用时 332 毫秒
131.
The northwest Hatton Bank margin is an ideal locality to demonstrate the interaction between bottom currents and slope configuration in controlling the distribution and morphology of bottom current deposits. The slope area investigated is isolated from any major terrigenous sediment supply and at present is influenced by the Deep Northern Boundary Current (DNBC). Swath bathymetry and high resolution acoustic data allow us to evaluate both local and regional controls on slope sedimentation and the possible mechanisms for bottom-current velocity variability across a slope setting within the NW European continental margin. The slope exhibits sculpting by bottom currents that flow in a predominantly southwest to northeast direction, and is only locally modified by slope failures. Positive relief features such as the Endymion Spur play an important role in constraining and accelerating bottom-current flow and, consequently, in redistributing sediment along the margin. We demonstrate that the size, morphology and distribution of bottom-current deposits along the slope vary as a function of the interaction between bottom currents, regional slope orientation and local seafloor topography.  相似文献   
132.
Biological activity on the bottom of the seabed is known to have significant influence on the dynamics of cohesive sediment on a small spatial and temporal scale. In this study, we aim to understand the large-scale effects of small-scale biological activity. Hereto, effects of biology are quantitatively incorporated into the process-based sediment transport module of Delft3D. This Bio-mud model is used to study cohesive sediment transport and deposition patterns in the Western Wadden Sea for a period of 1 year to capture seasonal changes.  相似文献   
133.
New trace-element data of rutile in kimberlite-borne ~1.85 Ga eclogite and pyroxenite xenoliths from the central Slave craton, as well as ~110 Ma MARID xenoliths from the Kaapvaal craton, provide constraints on the origins of lithospheric and sublithospheric mantle variability in high field strength element ratios. Rutiles in eclogites and pyroxenites have Zr/Hf ranging from 20 to 62 and Nb/Ta ranging from 10 to 40. Rutiles in MARID xenoliths have Zr/Hf from 24 to 33 and Nb/Ta from 10 to 41. Calculated whole-rock Zr/Hf is suprachondritic for eclogites with suggested gabbroic protoliths and subchondritic for boninite-like eclogites; the latter is consistent with cpx-controlled depletion in the protolith source. Within each eclogite type, positive correlations of Zr/Hf with La/Lu and negative correlations with Lu/Hf likely reflect fractionation of cpx and/or plagioclase during crystallisation of the protoliths. Zr/Hf–Nb/Ta relationships of some MARID-type rocks, which are products of lithospheric mantle metasomatism, and eclogite xenoliths plot on a silicate differentiation trend, whereas other samples have higher Nb/Ta at a given Zr/Hf. Fractionation of a few percent rutile from an HFSE-rich mafic melt can generate a trend towards strongly increased Nb/Ta at minimally changed Zr/Hf in the residual melt. Superposition of rutile fractionation on the effects of silicate differentiation, which fractionates Zr/Hf more strongly than Nb/Ta, can explain the Zr/Hf–Nb/Ta relationships of most eclogites from the central Slave craton as well as those of MARID rocks, metasomatised peridotites and group II kimberlites. By contrast, Zr/Hf–Nb/Ta relationships suggest that Group I kimberlites are mixtures between depleted peridotite and carbonatite. Thus, high Nb/Ta is a signature of lithospheric processes and may not be important in deeply subducted eclogites that bypass extended residence in the lithosphere. Conversely, considerable primary Zr/Hf variability was inherited by the eclogites, which is indicative of the compositional diversity of ancient subducted oceanic crust, which is expected to have generated substantial heterogeneity in sublithospheric basalt sources.  相似文献   
134.
Rb/Sr data for seven basaltic provinces (K-Ar ages 50-0 Ma) in southeastern Australia imply isotopic heterogeneities in the mantle sources. The total range of 87Sr/ 86Sr is 0.7031–0.7054. Effects of crustal contamination are negligible, since the rocks analyzed represent primary or primitive magma compositions. The inferred scales of heterogeneity range from <1 km for small intraprovince variations, to in the order of 100 km for the larger differences between provinces.Correlation of regional high 87Sr/86Sr in basaltic rocks with the presence of amphibole-bearing upper mantle xenoliths suggests that the degree of metasomatic activity in the underlying mantle is a major control on the Rb/Sr and 87Sr/86Sr values of mantle source volumes and partial melts derived from these. Xenolith data also indicate that both pervasive metasomatism and the presence of crystallized melts or cumulates as veins and dykes in mantle wall rock are possible mechanisms for metasomatic additions.Mantle isochrons can be constructed both within some provinces and between provinces. However, episodic metasomatism in the mantle source regions, with correlated enrichment in Rb/Sr and 87Sr/86Sr, can produce artificial isochrons which may have no relevance to mantle differentiation events.  相似文献   
135.
Over 700 apatite grains from a range of rock types have been analysed by laser-ablation microprobe ICPMS for 28 trace elements, to investigate the potential usefulness of apatite as an indicator mineral in mineral exploration. Apatites derived from different rock types have distinctive absolute and relative abundances of many trace elements (including rare-earth elements (REE), Sr, Y, Mn, Th), and chondrite-normalised trace-element patterns. The slope of chondrite-normalised REE patterns varies systematically from ultramafic through mafic/intermediate to highly fractionated granitoid rock types. (Ce/Yb)cn is very high in apatites from carbonatites and mantle-derived lherzolites (over 100 and over 200, respectively), while (Ce/Yb)cn values in apatites from granitic pegmatites are generally less than 1, reflecting both HREE enrichment and LREE depletion. Within a large suite of apatites from granitoid rocks, chemical composition is closely related to both the degree of fractionation and the oxidation state of the magma, two important parameters in determining the mineral potential of the magmatic system. Apatite can accept high levels of transition and chalcophile elements and As, making it feasible to recognise apatite associated with specific types of mineralisation. Multivariate statistical analysis has provided a user-friendly scheme to distinguish apatites from different rock types, based on contents of Sr, Y, Mn and total REE, the degree of LREE enrichment and the size of the Eu anomaly. The scheme can be used for the recognition of apatites from specific rock types or styles of mineralisation, so that the provenance of apatite grains in heavy mineral concentrates can be determined and used in geochemical exploration.  相似文献   
136.
137.
SeaMARC II and Sea Beam bathymetric data are combined to create a chart of the East Pacific Rise (EPR) from 8°N to 18°N reaching at least 1 Ma onto the rise flanks in most places. Based on these data as well as SeaMARC II side scan sonar mosaics we offer the following observations and conclusions. The EPR is segmented by ridge axis discontinuities such that the average segment lengths in the area are 360 km for first-order segments, 140 km for second-order segments, 52 km for third-order segments, and 13 km for fourth-order segments. All three first-order discontinuities are transform faults. Where the rise axis is a bathymetric high, second-order discontinuities are overlapping spreading centers (OSCs), usually with a distinctive 3:1 overlap to offset ratio. The off-axis discordant zones created by the OSCs are V-shaped in plan view indicating along axis migration at rates of 40–100 mm yr–1. The discordant zones consist of discrete abandoned ridge tips and overlap basins within a broad wake of anomalously deep bathymetry and high crustal magnetization. The discordant zones indicate that OSCs have commenced at different times and have migrated in different directions. This rules out any linkage between OSCs and a hot spot reference frame. The spacing of abandoned ridges indicates a recurrence interval for ridge abandonment of 20,000–200,000 yrs for OSCs with an average interval of approximately 100,000 yrs. Where the rise axis is a bathymetric low, the only second-order discontinuity mapped is a right-stepping jog in the axial rift valley. The discordant zone consists of a V-shaped wake of elongated deeps and interlocking ridges, similar to the wakes of second-order discontinuities on slow-spreading ridges. At the second-order segment level, long segments tend to lengthen at the expense of neighboring shorter segments. This can be understood if segments can be approximated by cracks, because the propagation force at a crack tip is directly proportional to crack length.There has been a counter-clockwise change in the direction of spreading on the EPR between 8 and 18° N during the last 1 Ma. The cumulative change has been 3°–6°, producing opening across the Orozco and Siqueiros transform faults and closing across the Clipperton transform. The instantaneous present-day Cocos-Pacific pole is located at approximately 38.4° N, 109.5° W with an angular rotation rate of 2.10° m.y.–1 This change in spreading direction explains the predominance of right-stepping discontinuities of orders 2–4 along the Siqueiros-Clipperton and Orozco-Rivera segments, but does not explain other aspects of segmentation which are thought to be linked to patterns of melt supply to the ridge axis.There are 23 significant seamount chains in the mapped area and most are created very near the spreading axis. Nearly all of the seamount chains have trends which fall between the absolute and relative plate motion vectors.  相似文献   
138.
The northern continental slope off the Ebro Delta has a badland topography indicating major slope erosion and mass movement of material that deposits sediment into a ponded lobe. The southern slope has a low degree of mass movement activity and slope valleys feed channel levee-complexes on a steep continental rise. The last active fan valley is V-shaped with little meandering and its thalweg merges downstream with the Valencia Valley. The older and larger inactive channel-levee complex is smoother, U-shaped, and meanders more than the active fan valley.  相似文献   
139.
140.
    
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号