首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207篇
  免费   5篇
  国内免费   1篇
测绘学   6篇
大气科学   7篇
地球物理   69篇
地质学   66篇
海洋学   40篇
天文学   15篇
综合类   3篇
自然地理   7篇
  2023年   1篇
  2021年   6篇
  2020年   6篇
  2019年   2篇
  2018年   5篇
  2017年   6篇
  2016年   9篇
  2015年   6篇
  2014年   7篇
  2013年   12篇
  2012年   11篇
  2011年   23篇
  2010年   9篇
  2009年   26篇
  2008年   12篇
  2007年   10篇
  2006年   11篇
  2005年   11篇
  2004年   9篇
  2003年   3篇
  2002年   7篇
  2001年   3篇
  2000年   3篇
  1998年   4篇
  1992年   2篇
  1991年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有213条查询结果,搜索用时 366 毫秒
131.
The relation between trophic regime and phytoplankton composition and function in oceanic systems is well accepted in oceanography. However, the relative dynamics and carbon cycling contributions of different phytoplankton groups across gradients of ocean richness are not fully understood. In this work we investigated phytoplankton dynamics along two transects from the NW African coastal upwelling to open-ocean waters of the north Atlantic subtropical gyre. We adopted a pigment-based approach to characterize community structure and to quantify group-specific growth and grazing rates and associated carbon fluxes. Changes in pigment cell concentration during the incubation experiments due to photoadaptation were corrected to obtain reliable rates. The oceanic region was dominated by Prochlorococcus (PRO) (45±7% of total chlorophyll a) while diatoms dominated in upwelling waters (40±37%). Phytoplankton grew faster (μ=0.78±0.26 d−1) and free of nutrient limitation (μ/μn=0.98±0.42) in the coastal upwelling region, with all groups growing at similar rates. In oceanic waters, the growth rate of bulk phytoplankton was lower (μ=0.52±0.16 d−1) and nutrient limited (μ/μn=0.68±0.19 d−1). Diatoms (0.80±0.39 d−1) and Synechococcus (SYN) (0.72±0.25 d−1) grew faster than Prymnesiophyceae (PRYMN) (0.62±0.26 d−1) and PRO (0.46±0.18 d−1). The growth rates of PRO and SYN were moderately nutrient limited (μ/μn=0.81 and 0.91, respectively), while the limitation for diatoms (μ/μn=0.71) and PRYMN (μ/μn=0.37) was more severe. Microzooplankton grazing rate was higher in upwelling (0.68±0.32 d−1) than in oceanic waters (0.37±0.19 d−1), but represented the main loss pathway for phytoplankton in both systems (m/μ=0.90±0.32 and 0.69±0.24, respectively). Carbon flux through phytoplankton, produced and grazed, increased from offshore to coastal (∼2 to ∼200 μg C L−1 d−1), with diatoms dominating the flux in the upwelling region (52%) while PRYMN (40%) and PRO (30%) dominated in the open ocean.  相似文献   
132.
Here we provide three new Holocene (11–0 cal ka BP) alkenone-derived sea surface temperature (SST) records from the southernmost Chilean fjord region (50–53°S). SST estimates may be biased towards summer temperature in this region, as revealed by a large set of surface sediments. The Holocene records show consistently warmer than present-day SSTs except for the past ~ 0.6 cal ka BP. However, they do not exhibit an early Holocene temperature optimum as registered further north off Chile and in Antarctica. This may have resulted from a combination of factors including decreased inflow of warmer open marine waters due to lower sea-level stands, enhanced advection of colder and fresher inner fjord waters, and stronger westerly winds. During the mid-Holocene, pronounced short-term variations of up to 2.5°C and a cooling centered at ~ 5 cal ka BP, which coincides with the first Neoglacial glacier advance in the Southern Andes, are recorded. The latest Holocene is characterized by two pronounced cold events centered at ~ 0.6 and 0.25 cal ka BP, i.e., during the Little Ice Age. These cold events have lower amplitudes in the offshore records, suggesting an amplification of the SST signal in the inner fjords.  相似文献   
133.
The Villalcampo Shear Zone (around 307 Ma) shows second-order shear zones (420–390 °C) with gold ore bodies hosted by episyenites, which consist of albite episyenites (albitites) and albite-Kfs episyenites, both types with different contents in sulphides and gold. Mass transfer modelling supports higher fluid/rock ratios in albitites than in albite-Kfs episyenites. The study of worldwide barren and gold-bearing episyenites reveals abundant sulphides in the latter as a distinguishing feature. The electrochemical processes at the surface of sulphide would have enhanced gold precipitation, sulphides working as a gold trap. A complex fluid history occurred in gold ore bodies hosted by episyenites, although in essence, it was similar to quartz-sealed faults hosting late Variscan gold deposits: (a) an early fluid equilibrated with the metamorphic pile with sulphides or with a metamorphic fingerprint, resulted in a sulphide deposition and (b) a shallower fluid reservoir of meteoric origin provided gold deposition. In contrast to earlier claims regarding episyenite fluid flow, a down temperature and probably an upwards fluid flow are proposed for the episyenitization process, also in keeping with the early stages of fluid flow in quartz-sealed faults. Fluid inclusions in albite confirm that the striking coupled quartz leaching albitization processes occurred around 400 °C and 60 MPa, crosscutting the retrograde solubility field of silica and yielding a vuggy rock. Initially, albite, and later quartz and sulphide, filled the vugs from the same or a very similar fluid. Uraninites deposited during the albitization and probably the onset of the sulphide deposition afforded the same age (270 ± 12 Ma) as other Spanish episyenites, confirming a synchronous and a regional-scale process and ruling out a relationship with the granite cooling history (324 ± 11 Ma).  相似文献   
134.
Once life appeared, it evolved and diversified. From primitive living entities, an evolutionary path of unknown duration, likely paralleled by the extinction of unsuccessful attempts, led to a last common ancestor that was endowed with the basic properties of all cells. From it, cellular organisms derived in a relative order, chronology and manner that are not yet completely settled. Early life evolution was accompanied by metabolic diversification, i.e. by the development of carbon and energy metabolic pathways that differed from the first, not yet clearly identified, metabolic strategies used. When did the different evolutionary transitions take place? The answer is difficult, since hot controversies have been raised in recent years concerning the reliability of the oldest life traces, regardless of their morphological, isotopic or organic nature, and there are also many competing hypotheses for the evolution of the eukaryotic cell. As a result, there is a need to delimit hypotheses from solid facts and to apply a critical analysis of contrasting data. Hopefully, methodological improvement and the increase of data, including fossil signatures and genomic information, will help reconstructing a better picture of life evolution in early times as well as to, perhaps, date some of the major evolutionary transitions. There are already some certitudes. Modern eukaryotes evolved after bacteria, since their mitochondria derived from ancient bacterial endosymbionts. Once prokaryotes and unicellular eukaryotes had colonized terrestrial ecosystems for millions of years, the first pluricellular animals appeared and radiated, thus inaugurating the Cambrian. The following sections constitute a collection of independent articles providing a general overview of these aspects.  相似文献   
135.
A novel type of colonisation of a basaltic rock, collected on the Arctic island of Svalbard, Norway, during the AMASE expedition in 2004, was characterised using Raman spectroscopy and Scanning Electron Microscopy (SEM). The sample contains two different types of extremophile communities, one occurring behind a radial white crystallisation and the other occurring inside a dark vacuole. Several types of minerals and microbial colonies have been identified by both Raman spectroscopy and SEM analyses. It is the first time that photosynthetic communities have been documented to colonise the inside of dark basaltic rocks. Our discovery has important implications for planetary exploration because it extends the analytical capability and our understanding of microbial rock colonisations to subaerial volcanic outcrops and has wide implications towards the search for life in extraterrestrial planets. In this work we also demonstrate that the use of different laser wavelengths for Raman spectroscopic studies and complementary microscopic analysis are critical for a comprehensive organic and inorganic compound identification.  相似文献   
136.
We consider astronomical and geophysical bounds in order to test Kaluza-Klein like models and some particular models of Bekenstein's theory. Bounds on the free parameteres of the theories are obtained. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
137.
In semiarid ecosystems, the transfer of water, sediments, and nutrients from bare to vegetated areas is known to be crucial to ecosystem functioning. Rainfall simulation experiments were performed on bare‐soil and vegetated surfaces, on both wet and dry soils, in semiarid shrub‐steppe landscapes of SE Spain to investigate the spatial and temporal factors and interactions that control the fine‐scale variation in water infiltration, runoff and soil loss, and hence the water and sediment flows in these areas. Three types of shrub‐steppe landscapes varying in plant community and physiography, and four types of plant patches (oak shrub, subshrub, tussock grass, and short grass mixed with chamaephytes) were studied. Higher infiltration and lower runoff and soil loss were measured on vegetation patches than on bare soils, for both dry and wet conditions. The oak‐shrub patches produced no runoff, while the subshrub patches showed the highest runoff and soil loss. Despite these differences among patch types, the influence of vegetation patch type on the variables analysed was not significant. The response of bare soil surfaces clearly varied between landscape types, yet the differences were only relevant under dry soil conditions. Stone cover, particularly the cover of embedded stones, and crust cover, were the key explanatory variables for the hydrological behaviour of bare soils. The study documents quantitatively how bare soils and vegetation patches function as runoff sources and runoff sinks, respectively, for a wide range of soil moisture conditions, and illustrates that landscape‐type effects on bare‐soil runoff sources may also exert an important control on the site hydrology, while the role of the vegetation patch type is less important. The effects of the control factors are modulated by antecedent soil moisture, with dry soils showing the most contrasting soil water infiltration between landscapes and surface types. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
138.
The relationship between organic enrichment and macrobenthic colonization patterns was investigated during an 8-month period in Diplodus sargus (white seabream) production ponds. A stratified sampling design was applied and each pond was divided into three zones: water entrance (WE); central (C); and automatic feeder zones (AF). Generally, the number of species and Shannon–Wiener diversity increased from the WE to the AF zone. Abundance did not present a clear trend. The recently developed marine biotic index (AMBI) was applied and showed to be sufficiently robust to discriminate, within a relatively small area, differences in macrobenthic communities due to organic enrichment. Nevertheless, caution is advised when applying this index or others based on ecological group’s assignment, as the classification of a certain area may differ when allocating a certain species to an unsuitable group. This is particularly evident when common species are involved.  相似文献   
139.
The bioavailability and fate of heavy metals in the environment are often controlled by sorption reactions on the reactive surfaces of soil minerals. We have developed a non-electrostatic equilibrium model (NEM) with both surface complexation and ion exchange reactions to describe the sorption of Pb and Cd in single- and binary-metal systems over a range of pH and metal concentration. Mineralogical and exchange properties of three different acidic soils were used to constrain surface reactions in the model and to estimate surface densities for sorption sites, rather than treating them as adjustable parameters. Soil heterogeneity was modeled with >FeOH and >SOH functional groups, representing Fe- and Al-oxyhydroxide minerals and phyllosilicate clay mineral edge sites, and two ion exchange sites (X and Y), representing clay mineral exchange. An optimization process was carried out using the entire experimental sorption data set to determine the binding constants for Pb and Cd surface complexation and ion exchange reactions.Modeling results showed that the adsorption of Pb and Cd was distributed between ion exchange sites at low pH values and specific adsorption sites at higher pH values, mainly associated with >FeOH sites. Modeling results confirmed the greater tendency of Cd to be retained on exchange sites compared to Pb, which had a higher affinity than Cd for specific adsorption on >FeOH sites. Lead retention on >FeOH occurred at lower pH than for Cd, suggesting that Pb sorbs to surface hydroxyl groups at pH values at which Cd interacts only with exchange sites. The results from the binary system (both Pb and Cd present) showed that Cd retained in >FeOH sites decreased significantly in the presence of Pb, while the occupancy of Pb in these sites did not change in the presence of Cd. As a consequence of this competition, Cd was shifted to ion exchange sites, where it competes with Pb and possibly Ca (from the background electrolyte). Sorption on >SOH functional groups increased with increasing pH but was small compared to >FeOH sites, with little difference between single- and binary-metal systems. Model reactions and conditional sorption constants for Pb and Cd sorption were tested on a fourth soil that was not used for model optimization. The same reactions and constants were used successfully without adjustment by estimating surface site concentrations from soil mineralogy. The model formulation developed in this study is applicable to acidic mineral soils with low organic matter content. Extension of the model to soils of different composition may require selection of surface reactions that account for differences in clay and oxide mineral composition and organic matter content.  相似文献   
140.
The Sierra de Los Tuxtlas is a recently active volcanic field, with eruptions in 1664 and 1792. It holds one of the reserves of tropical evergreen forest in Mexico, as well as several maar lakes. One of them, Lago Verde, was chosen for a three-fold study (1) on its present limnological conditions, (2) on the algal community living in the water column and preserved in the surface sediments; and (3) on its recent history (ca. 340 yr). The palaeolimnological study was based on multiproxy analyses on core material dated by 210Pb, 137Cs and 14C. Lago Verde is a small, shallow lake with dilute, slightly alkaline water (CO32− + HCO3 > Cl > SO42−, Na+ + K+ > Ca2+ > Mg2+). It is turbid, eutrophic, with high phosphorus levels. It is a warm polymictic lake, with thermal and oxygen stratification establishing by midday during the warm months. The lake does not stratify in winter. Diatoms dominate the phytoplankton community in the cold ‘nortes’ season, Cyanobacteria in summer, and Chlorophyta in autumn. Cyanobacteria (Chroococcales) are not well preserved in the surface sediments while Chlorophyta are better preserved. Sedimentary diatoms are well preserved, dominated by the three most abundant species in the water column: Achnanthidium minutissimum, Fragilaria capucina and Aulacoseira granulata. The base of the studied sequences is constrained by the historic eruption of 1664. The period from 1664 to 1963 is characterised by a meso-eutrophic lake. Tropical Forest vegetation reaches maximum values between ca. 1800 and 1963. Between ca. 1785 and 1885 the lake was slightly shallower than in the rest of the 1664–1963 period, probably recording climatic variability. An early pulse of anthropogenic disturbance was recorded by ca. 1921 and after ca. 1963 intense forest clearance and high erosion rates led to a more turbid, more productive, nutrient-rich lake. The highest anthropogenic impact was reached by ca. 1988; afterwards the lake and its basin reached a new balance, with the establishment of the present modern conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号