首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   737篇
  免费   18篇
  国内免费   35篇
测绘学   19篇
大气科学   39篇
地球物理   188篇
地质学   290篇
海洋学   65篇
天文学   62篇
综合类   3篇
自然地理   124篇
  2023年   3篇
  2022年   5篇
  2021年   12篇
  2020年   10篇
  2019年   12篇
  2018年   19篇
  2017年   19篇
  2016年   20篇
  2015年   11篇
  2014年   42篇
  2013年   48篇
  2012年   19篇
  2011年   47篇
  2010年   28篇
  2009年   39篇
  2008年   44篇
  2007年   29篇
  2006年   20篇
  2005年   30篇
  2004年   21篇
  2003年   29篇
  2002年   21篇
  2001年   17篇
  2000年   12篇
  1999年   19篇
  1998年   12篇
  1997年   10篇
  1996年   20篇
  1995年   11篇
  1994年   18篇
  1993年   11篇
  1992年   9篇
  1991年   5篇
  1990年   10篇
  1989年   5篇
  1988年   5篇
  1987年   9篇
  1986年   7篇
  1985年   10篇
  1984年   11篇
  1983年   10篇
  1982年   7篇
  1981年   3篇
  1980年   7篇
  1979年   6篇
  1978年   8篇
  1977年   3篇
  1976年   6篇
  1973年   3篇
  1969年   2篇
排序方式: 共有790条查询结果,搜索用时 15 毫秒
91.
Hydrologically driven mass wasting in the form of landslides on steep slopes is a worldwide occurrence. High-profile events in, for example, Brazil, Chile, the Philippines, Puerto Rico, and Venezuela during the last three decades all clearly illustrate, based upon significant losses of life and property, that hydrologically driven slope instability in developed (urban) areas can be a major geologic/environmental hazard. The focus of this study is the 1973 hydrologically driven Lerida Court landslide in Portola Valley, CA, USA. Physics-based hydrologic-response simulation, with the comprehensive Integrated Hydrology Model, was employed to forensically estimate the spatiotemporal pore pressure distributions for the Lerida Court site. Slope stability, driven by the simulated pore pressure dynamics, was estimated for the Lerida Court site with the infinite slope/Factor of Safety approach. The pore pressure dynamics for the Lerida Court site were reasonably captured by the hydrologic-response simulation. The estimated time of slope failure for the Lerida Court site compares well with field observations. A recommendation is made that hydrologically driven slope stability estimates including variably saturated subsurface flow be standard protocol for development sites in steep urban settings.  相似文献   
92.
Five mafic lava flows located on the southern flank of Mount Baker are among the most primitive in the volcanic field. A comprehensive dataset of whole rock and mineral chemistry reveals the diversity of these mafic lavas that come from distinct sources and have been variably affected by ascent through the crust. Disequilibrium textures present in all of the lavas indicate that crustal processes have affected the magmas. Despite this evidence, mantle source characteristics have been retained and three primitive endmember lava types are represented. These include (1) modified low-K tholeiitic basalt (LKOT-like), (2) typical calc-alkaline (CA) lavas, and (3) high-Mg basaltic andesite and andesite (HMBA and HMA). The Type 1 endmember, the basalt of Park Butte (49.3–50.3 wt% SiO2, Mg# 64–65), has major element chemistry similar to LKOT found elsewhere in the Cascades. Park Butte also has the lowest overall abundances of trace elements (with the exception of the HREE), indicating it is either derived from the most depleted mantle source or has undergone the largest degree of partial melting. The Type 2 endmember is represented by the basalts of Lake Shannon (50.7–52.6 wt% SiO2, Mg# 58–62) and Sulphur Creek (51.2–54.6 wt% SiO2, Mg# 56–57). These two lavas are comparable to calc-alkaline rocks found in arcs worldwide and have similar trace element patterns; however, they differ from each other in abundances of REE, indicating variation in degree of partial melting or fractionation. The Type 3 endmember is represented by the HMBA of Tarn Plateau (51.8–54.0 wt% SiO2, Mg# 68–70) and the HMA of Glacier Creek (58.3–58.7 wt% SiO2, Mg# 63–64). The strongly depleted HREE nature of these Type 3 units and their decreasing Mg# with increasing SiO2 suggests fractionation from a high-Mg basaltic parent derived from a source with residual garnet. Another basaltic andesite unit, Cathedral Crag (52.2–52.6 wt% SiO2, Mg# 55–58), is an Mg-poor differentiate of the Type 3 endmember. The calc-alkaline lavas are least enriched in a subduction component (lowest H2O, Sr/PN, and Ba/Nb), the LKOT-like lavas are intermediate (moderate Sr/PN and Ba/Nb), and the HMBA are most enriched (highest H2O, Sr/PN and Ba/Nb). The generation of the LKOT-like and calc-alkaline lavas can be successfully modeled by partial melting of a spinel lherzolite with variability in composition of slab flux and/or mantle source depletion. The HMBA lavas can be successfully modeled by partial melting of a garnet lherzolite with slab flux compositionally similar to the other lava types, or less likely by partial melting of a spinel lherzolite with a distinctly different, HREE-depleted slab flux.  相似文献   
93.
Latest Pleistocene and Holocene glacier variations in the European Alps   总被引:1,自引:0,他引:1  
In the Alps, climatic conditions reflected in glacier and rock glacier activity in the earliest Holocene show a strong affinity to conditions in the latest Pleistocene (Younger Dryas). Glacier advances in the Alps related to Younger Dryas cooling led to the deposition of Egesen stadial moraines. Egesen stadial moraines can be divided into three or in some cases even more phases (sub-stadials). Moraines of the earliest and most extended advance, the Egesen maximum, stabilized at 12.2 ± 1.0 ka based on 10Be exposure dating at the Schönferwall (Tyrol, Austria) and the Julier Pass-outer moraine (Switzerland). Final stabilization of moraines at the end of the Egesen stadial was at 11.3 ± 0.9 ka as shown by 10Be data from four sites across the Alps. From west to east the sites are Piano del Praiet (northwestern Italy), Grosser Aletschgletscher (central Switzerland), Julier Pass-inner moraine (eastern Switzerland), and Val Viola (northeastern Italy). There is excellent agreement of the 10Be ages from the four sites. In the earliest Holocene, glaciers in the northernmost mountain ranges advanced at around 10.8 ± 1.1 ka as shown by 10Be data from the Kartell site (northern Tyrol, Austria). In more sheltered, drier regions rock glacier activity dominated as shown, for example, at Julier Pass and Larstig valley (Tyrol, Austria). New 10Be dates presented here for two rock glaciers in Larstig valley indicate final stabilization no later than 10.5 ± 0.8 ka. Based on this data, we conclude the earliest Holocene (between 11.6 and about 10.5 ka) was still strongly affected by the cold climatic conditions of the Younger Dryas and the Preboreal oscillation, with the intervening warming phase having had the effect of rapid downwasting of Egesen glaciers. At or slightly before 10.5 ka rapid shrinkage of glaciers to a size smaller than their late 20th century size reflects markedly warmer and possibly also drier climate. Between about 10.5 ka and 3.3 ka conditions in the Alps were not conducive to significant glacier expansion except possibly during rare brief intervals. Past tree-line data from Kaunertal (Tyrol, Austria) in concert with radiocarbon and dendrochronologically dated wood fragments found recently in the glacier forefields in both the Swiss and Austrian Alps points to long periods during the Holocene when glaciers were smaller than they were during the late 20th century. Equilibrium line altitudes (ELA) were about 200 m higher than they are today and about 300 m higher in comparison to Little Ice Age (LIA) ELAs. The Larstig rock glacier site we dated with 10Be is the type area for a postulated mid-Holocene cold period called the Larstig oscillation (presumed age about 7.0 ka). Our data point to final stabilization of those rock glaciers in the earliest Holocene and not in the middle Holocene. The combined data indicate there was no time window in the middle Holocene long enough for rock glaciers of the size and at the elevation of the Larstig site to have formed. During the short infrequent cold oscillations between 10.5 and 3.3 ka small glaciers (less than several km2) may have advanced to close to their LIA dimensions. Overall, the cold periods were just too short for large glaciers to advance. After 3.3 ka, climate conditions became generally colder and warm periods were brief and less frequent. Large glaciers (for example Grosser Aletschgletscher) advanced markedly at 3.0–2.6 ka, around 600 AD and during the LIA. Glaciers in the Alps attained their LIA maximum extents in the 14th, 17th, and 19th centuries, with most reaching their greatest LIA extent in the final 1850/1860 AD advance.  相似文献   
94.
An in situ U–Pb SIMS (IN-SIMS) method to date micro-baddeleyite crystals as small as 3 μm is presented with results from three samples that span a variety of ages and geologic settings. The method complements ID-TIMS geochronology by extending the range of dateable crystals to sizes smaller than can be recovered by physical separation. X-ray mapping and BSE imaging are used to locate target grains in thin section, followed by SIMS analysis on a CAMECA ims 1270, using the field aperture in the transfer column to screen out ions from host phases. Internal age precisions for the method are anticipated to range from 0.1% for Precambrian rocks to 3–7% for Phanerozoic rocks. Results establish a 2689 ± 5 Ma age for mafic dikes in the Wyoming craton, USA, a 1540 ± 30 Ma age for a subaerial lava flow from the Thelon Basin of northern Canada, and a 457 ± 34 Ma age for mafic dikes in the platform sequence of southeastern Siberia. The method is ideal for relatively non-destructive dating of small samples such as extraterrestrial rocks and precious terrestrial samples.  相似文献   
95.
Fluids from the ultramafic-hosted Lost City hydrothermal field were analyzed for total dissolved organic carbon and dissolved organic acids. Formate (36-158 μmol/kg) and acetate (1-35 μmol/kg) concentrations are higher than in other fluids from unsedimented hydrothermal vents, and are a higher ratio of the total dissolved organic carbon than has been found in most marine geothermal systems. Isotopic evidence is consistent with an abiotic formation mechanism for formate, perhaps during serpentinization processes in the sub-surface. Further support comes from previous studies where the abiological formation of low molecular weight organic acids has been shown to be thermodynamically favorable during hydrothermal alteration of olivine, and laboratory studies in which the reduction of carbon dioxide to formate has been confirmed. As the second most prevalent carbon species after methane, formate may be an important substrate to microbial communities in an environment where dissolved inorganic carbon is limited. Acetate is found in locations where sulfate reduction is believed to be important and is likely to be a microbial by-product, formed either directly by autotrophic metabolic activity or indirectly during the fermentative degradation of larger organic molecules. Given the common occurrence of exposed ultramafic rocks and active serpentinization within the worlds ocean basins, the abiotic formation of formate may be an important process supporting life in these high pH environments and may have critical implications to understanding the organic precursors from which life evolved.  相似文献   
96.
Pliocene, non-tropical, widespread and locally thick (up to 100 m) limestones occur in Hawke's Bay, eastern North Island, where they are intimately associated with very thick ( > 5 km), terrigenous-dominated, Neogene sequences that formed in a tectonically active convergent margin setting. The non-tropical character of the limestones is shown unequivocally by (1) the complete dominance of skeletal calcarenites and calcirudites, (2) the occurrence of oyster banks as the only in situ organic structures, (3) the dominance of barnacles, epifaunal molluscs, bryozoans, echinoderms, foraminifers, brachiopods and calcareous red algae as skeletal components, and (4) the preponderance of calcite over aragonite in the mineralogy of the skeletal grains and cements. The abundance of barnacle fragments in the limestones, and the related exclusive occurrence of only one major organic association, a barnacle-(epifaunal) bivalve-bryozoan assemblage, is striking and unusual given the extent of the limestones. Pecten and oyster valves acted as substrates for barnacle attachment, and their growth was promoted by strong tidal paleocurrents that swept the depositional setting: a long (450 km), narrow (30–50 km) forearc basin seaway, which formed between an actively deforming subduction complex to the east and an uplifting structural ridge to the west. Synsedimentary deformation promoted limestone formation on the margins of the seaway by creating current-swept, clastic-free submarine ridges that acted as the sites of carbonate production. Tidal flows dispersed the carbonate constituents and organised them into a wide spectrum of tide-influenced, cross-bedded and horizontal structures. Most spectacular are occurrences of giant tabular cross-beds, with sets 10–40 m thick and foreset dips of 7–36°, some interpreted as the deposits of major sand bars on carbonate deltas marginal to the mouths of saddles traversing the rising antiforms, and others analogous to modern linear sand ridges. The small- to large-scale planar and trough cross-beds, and the horizontal and lenticular beds that are invariably associated with the giant cross-beds and dominate most sections, represent mainly the deposits of sand waves and sand sheets at inner- to mid-shelf depths in the seaway.  相似文献   
97.
We introduce a technique for U–Pb dating of baddeleyite using secondary ion mass spectrometry (SIMS) in situ analysis of ng-mass crystals that cannot be efficiently extracted by conventional mineral separation techniques. Average 207Pb/206Pb ages for Precambrian baddeleyite crystals are within < 0.3% of the respective isotope dilution thermal ionization mass spectrometry (ID-TIMS) ages. 206Pb/238U ratios are corrected for instrumental fractionation calibrated through linear regression in a Pb/U relative sensitivity vs. UO2+/U+ calibration plot. Calibration is performed on separated baddeleyite crystals (~ 100–200 μm in maximum dimension) mounted in random crystallographic orientation. 206Pb/238U ages for baddeleyite from Duluth gabbro (FC4b) and Kovdor are accurate within 1–2% when averaging 15–30 individual spot analyses and relative sensitivities calibrated on Phalaborwa baddeleyite. The relative difference of 206Pb/238U between large crystals and micro-baddeleyite from FC4b is within ~ 1%. Comparison between silicate glass and baddeleyite, as well as replicate analysis of the same grains in different orientations relative to the incidence direction of the primary beam support previous evidence for bias in Pb/U sensitivity in baddeleyite due to variable crystal orientations. We successfully utilized oxygen flooding and a UO2+/U+-based calibration to significantly reduce orientation dependent bias.  相似文献   
98.
Quick-look assessments to identify optimal CO2 EOR storage sites   总被引:1,自引:0,他引:1  
A newly developed, multistage quick-look methodology allows for the efficient screening of an unmanageably large number of reservoirs to generate a workable set of sites that closely match the requirements for optimal CO2 enhanced oil recovery (EOR) storage. The objective of the study is to quickly identify miscible CO2 EOR candidates in areas that contain thousands of reservoirs and to estimate additional oil recovery and sequestration capacities of selected top options through dimensionless modeling and reservoir characterization. Quick-look assessments indicate that the CO2 EOR resource potential along the US Gulf Coast is 4.7 billion barrels, and CO2 sequestration capacity is 2.6 billion metric tons. In the first stage, oil reservoirs are screened and ranked in terms of technical and practical feasibility for miscible CO2 EOR. The second stage provides quick estimates of CO2 EOR potential and sequestration capacities. In the third stage, a dimensionless group model is applied to a selected set of sites to improve the estimates of oil recovery and storage potential using appropriate inputs for rock and fluid properties, disregarding reservoir architecture and sweep design. The fourth stage validates and refines the results by simulating flow in a model that describes the internal architecture and fluid distribution in the reservoir. The stated approach both saves time and allows more resources to be applied to the best candidate sites.  相似文献   
99.
We developed light requirements for eelgrass in the Pacific Northwest, USA, to evaluate the effects of short- and long-term reductions in irradiance reaching eelgrass, especially related to turbidity and overwater structures. Photosynthesis-irradiance experiments and depth distribution field studies indicated that eelgrass productivity was maximum at a photosynthetic photon flux density (PPFD) of about 350–550 μmol quanta m−2 s−1. Winter plants had approximately threefold greater net apparent primary productivity rate at the same irradiance as summer plants. Growth studies using artificial shading as well as field monitoring of light and eelgrass growth indicated that long-term survival required at least 3 mol quanta m−2 day−1 on average during spring and summer (i.e., May-September), and that growth was saturated above about 7 mol quanta m−2 day−1. We conclude that non-light-limited growth of eelgrass in the Pacific Northwest requires an average of at least 7 mol quanta m−2 day−1 during spring and summer and that long-term survival requires a minimum average of 3 mol quanta m−2 day−1.  相似文献   
100.
In natural weathering systems, both the chemistry and the topography of mineral surfaces change as rocks and minerals equilibrate to surface conditions. Most geochemical research has focused on changes in solution chemistry over time; however, temporal changes in surface topography may also yield information about rates and mechanisms of dissolution. We use stochastic dissolution simulations of a regular 2-D lattice with reaction mechanisms defined in terms of nearest neighbor interactions to elucidate how the surface area and reactivity of a crystal evolve during dissolution. Despite the simplicity of the model, it reproduces key features observed or inferred for mineral dissolution. Our model results indicate that: (i) dissolving surfaces reach a steady-state conformation after sufficient dissolution time, (ii) linear defects cause surface area and dissolution rate to vary in concert with one another, (iii) sigmoidal and non-sigmoidal rate vs. free-energy of reaction (ΔGrxn) behavior can be rationalized in terms of the multiple steps occurring during dissolution, and (iv) surface roughness as a function of ΔGrxn is highly sensitive to the reaction mechanism. When simulated times to reach steady-state are compared to published time series rate data using suitable scaling, good agreement is found for silicate minerals while the model significantly over-predicts the duration of the transient for Fe and Al oxides. The implication of our simple model is that many aspects of mineral dissolution behavior, including approach to steady-state, sigmoidal vs. non-sigmoidal rate vs. ΔGrxn behavior, and development of rougher surfaces in conditions further from equilibrium can be explained by nearest neighbor interactions and simple Kossel-type models where reactivity of a surface is defined in terms of perfect surface, step, and kink sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号